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Abstract 
This paper discusses how researchers can augment their traditional publications and 
share their large research datasets in a format easily analysed by other researchers, 
while enhancing their own analytic capabilities. The case study is the Queensland 
Energy and Jobs Plan, and the data portal implemented using Power BI. The data 
portal presents the results from simulating the effect of implementing the plan on the 
Australian National Electricity Market, encompassing the eastern seaboard of 
Australia. The case study incorporates 198 simulations which are parameter sweeps 
of 9 scenarios of coal generation retirement and transmission augmentation, 2 wind 
levels, and 11 candidate years representing different weather conditions. The portal 
development process compares different data extraction, transformation, and load 
strategies and combines proven processes from Business Analysis and Data 
Management Bodies of Knowledge. The process result is a portal based on a 
relational database that provides a template for future projects, is simulation model 
agnostic, informs simulation model improvements, and provides a foundation for 
more advanced analytics. Future extensions could address dilemmas in the energy 
market, such as including generation and storage relying on high-frequency arbitrage 
within long-term development modelling. 

Keywords: Power BI; Data Analytics Platform; BABOK; DMBOK, Queensland Energy 
and Jobs Plan; Agent-based Model of Electricity Systems; Intelligent Energy 
Systems; Prophet.  
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1 Introduction 
Billions of dollars of investment in variable renewable energy (VRE)and storage projects has 
been and will be committed to enable Australia to reach Australia’ zero-net emission (ZNE) 
target by 2050 (ARENA, 2023). Consequently, many massive project decisions in both the 
public and private sectors will require support by sound modelling to ensure appropriate 
levels of investment and returns. While energy generation and storage projects are and can 
be covered by contracts or spot markets; connecting generation with consumer loads 
requires transmission and distribution (T&D) networks. Planning and paying for T&D 
augmentation required for the interconnection of VRE requires coordination, whether 
centrally planned or via the market modelling will play an essential role.  

Too simplistic modelling of power flow requirements is likely to lead to over or 
underinvestment in transmission and distribution (T&D) capacity. Underinvestment in T&D 
would lead to generators shedding power or to brownouts and blackouts as consumer 
demand exceeds the capacity of the T&D. Overinvestment in T&D could lead to 
underutilised T&D, presenting a loss of opportunity to profitably invest elsewhere.  

Additionally, state governments are seeking evidence-based input into the location of new 
VRE and loads, and appropriate subsidies to incentivise industry to those locations along 
with local manufacturing content. Financial and simulation modelling can provide this 
evidence. Furthermore, there is a need for modelling the impacts of different regulations and 
tariffs to understand the social as well as the economic impacts. Models to achieve these 
goals are complex and data intensive. 

To support Australia’s decision-making in the transition to ZNE by 2050 at least cost while 
maintaining system stability, this paper discusses how researchers can augment their 
traditional research approaches and share their large research datasets in a format easily 
analysed by other researchers. Our approach provides the foundation for more advanced 
analytics to inform agile policy positions. 

Section 2 reviews the literature. Section 3 discussed the case study that is a simulation of 
the Queensland Energy and Jobs Plan (QEJP). Section 4 discusses the motivation and 
process to normalise the simulation input and output data for use in a relational database 
within Power BI and publishing to the data portal to the web.1 Beyond sharing the data for 
analysis with other researchers, Section 5 discusses nine other benefits from using relational 
databases within Power BI. Section 6 discusses the costs involved in developing relational 
data mining and associated databases and analytical tools, while Section 7 discusses the 
application of relational data mining and analytical tools and identifies possible next steps. 
Section 8 concludes the paper. 

2 Literature review 
The novelty in this paper is in synthesising the Business Analysis Bodies of Knowledge 
(BABoK) (IIBA, 2015) and Data Management Body of Knowledge (DMBoK) (Earley, 
Henderson, & Data Management Association, 2017) to underpin analytic platform 
development based on relational databases to support easy reuse of the increasing large 
datasets from simulation modelling within the energy sector. BABoK has been peer-reviewed 

 
1 Data Download and Analysis Portal of the Queensland Energy and Jobs Plan 2022 Simulation Modelling Results: 
https://app.powerbi.com/view?r=eyJrIjoiY2Q2YWVjNzctNDMzMi00NWRmLWEzMzEtZTE2MjdlOTYyNzYxIiwidCI6IjVhN2NjOGFiLWE0ZGMt
NGY5Yi1iZjYwLTY2NzE0MDQ5YWQ2MiIsImMiOjEwfQ%3D%3D (The download feature has yet to be enabled). 

https://app.powerbi.com/view?r=eyJrIjoiY2Q2YWVjNzctNDMzMi00NWRmLWEzMzEtZTE2MjdlOTYyNzYxIiwidCI6IjVhN2NjOGFiLWE0ZGMtNGY5Yi1iZjYwLTY2NzE0MDQ5YWQ2MiIsImMiOjEwfQ%3D%3D
https://app.powerbi.com/view?r=eyJrIjoiY2Q2YWVjNzctNDMzMi00NWRmLWEzMzEtZTE2MjdlOTYyNzYxIiwidCI6IjVhN2NjOGFiLWE0ZGMtNGY5Yi1iZjYwLTY2NzE0MDQ5YWQ2MiIsImMiOjEwfQ%3D%3D


 

 
Page 3 

by thousands of business professionals and DMBoK has been peer-reviewed by thousands 
of data management and information technology professionals, both are outside the 
traditional academic literature. Nevertheless, these bodies of knowledge are substantial and 
rigorously developed. This situation shows a gap in the academic literature. 

The benefit of BABoK is the framework it presents to integrate a range of factors within a 
sector to support decision-making. This benefit is clear in several business sectors, including 
energy (Takai, Shintani, Andoh, & Washizaki, 2020), records management (Guevara, 
Loaiza, Lévano, & Zambrano, 2022), education (Sklyar, 2021) and construction (Macariola & 
Silva, 2019). In all these sectors, the application enables more reliable decision-making 
based on assimilating substantial amounts of evidence into interpretable chunks. 

2.1 Relational Data Mining and the Case Study’s Analytics Platform – Power BI 
Relational data mining supplies further motivation for building an analytics platform (de Ville, 
2001; Džeroski & Lavrač, 2001). Data mining is the practice of analysing large databases to 
generate novel information using a set of technologies and techniques. An historical note to 
avoid confusion, relational data mining combined the two disciplines of data mining from 
statistics and relational databases from data management. Each discipline has its 
terminology for loosely similar concepts: data mining uses statistical terminology, such as, 
table, observations, and variables, and relational databases use data management 
terminology, such as, entity, records, attributes. Traditional data mining methods use a 
matrix form where rows denote observations, and columns denote variables. This matrix 
form is unsuitable for analysing the electricity system, given its multiple entities interconnect 
via information and energy flows. The five main entries include generators, lines, nodes, load 
serving entities, and independent system operator. A relational database can capture the 
relationships between these entities and store information about the entities’ attributes 
without redundancy that comes from keeping multiple copies of the same data. 

Using the relational database approach efficiently supports the traditional hypothesised 
impact analysis. However, only using the traditional hypothesis approach will miss 
relationships hidden in large relational databases that are amenable to relational data mining 
(Džeroski & Lavrač, 2001) or multi-relational data mining (Padhy & Panigrahi, 2012; 
Valêncio, Oyama, Neto, & Colombini, 2012). The requirement for the electricity systems to 
transition to a zero-net emission adds an extra layer of complexity to modelling the electricity 
system. This requirement makes adopting a relational approach more pressing. 

This case study’s data analytics platform was developed using Power BI, one of a suite of 
Microsoft tools. These are part of Microsoft’s long-term project to bring together relational 
databases and data mining along with data extraction, transformation, and loading (ETL) 
techniques (de Ville, 2001). Microsoft’s project matured through various iterations of SQL 
Server. Currently, Microsoft is expanding its ELT, data mining, and relations database 
functionality within a new suit of integrated products called Microsoft Fabric2. Three of the 
suite’s products, SQL Server, Power BI, and Azure incorporate ‘Analysis Services’ that 
include a set of algorithms to compress relational databases called Vertipaq and a data 
analytics (DAX) language optimised for Vertipaq.3 Vertipaq is an in-memory columnar 

 
2 Microsoft Fabric: https://learn.microsoft.com/en-us/fabric/get-started/microsoft-fabric-overview 
3 Microsoft Analysis Services: https://learn.microsoft.com/en-us/analysis-services/analysis-services-
overview?view=asallproducts-allversions 

https://learn.microsoft.com/en-us/fabric/get-started/microsoft-fabric-overview
https://learn.microsoft.com/en-us/analysis-services/analysis-services-overview?view=asallproducts-allversions
https://learn.microsoft.com/en-us/analysis-services/analysis-services-overview?view=asallproducts-allversions
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database that helps compression and query speed.4 In a comparative analysis of business 
intelligence platforms, Gartner finds Power BI in first place for ability to execute and 
completeness of visions in 20225 and 20236. Sections 4 (Step 4) and 5.4 discuss using 
Vertipaq and DAX in the case study’s data analytics platform. 

Two proprietary examples of the potential for energy market data analytics platforms include: 
(1) Intelligence Energy Systems data analytics portal called NEO that is specialised in data 
visualisation for energy markets7, and (2) Energy Exemplar’s “Energy Analytics and Decision 
Platform for all Systems” that appears to have integrated its market simulation model 
PLEXOS with its analytics platform.8  

2.2 Hybrid Machine Learning and Simulation Modelling and the Case Study’s 
Simulation Model – Agent Base Model of Electrical Systems 

New advances in hybrid machine learning and simulation modelling provide even more 
motivation for building an analytics platform (von Rueden, Mayer, Sifa, Bauckhage, & 
Garcke, 2020). One of the upcoming issues in modelling optimal development pathways is 
that some storage and generation is only viable given high-frequency settlement, and 
modelling optimal development pathways is multi decadal. This situation poses a dilemma. 
Either make incredibly time-consuming simulations to model high-frequency settlement over 
future decades with storage remaining viable, or less time-consuming simulations to model 
lower frequency settlement but lose the viability of storage. In this trade-off, the Integrated 
Systems Plan (AEMO, 2021, pp. 51-52) opts for either a half-hourly or hourly interval in its 
high-frequency simulation model to inform its multi decadal capacity model. This half-hourly 
or hourly modelling is short of the current market settlement period of 5-minutes. The 
resulting modelling could under-represent viable storage within optimal development 
pathways given the current settlement period. An alternative approach to this dilemma is 
applying machine learning to the simulation results (von Rueden et al., 2020). This hybrid 
machine learning and simulation approach allows leverage of the analytics platform to tackle 
similar computationally intensive simulations. 

The case study’s simulation model uses a modified version of Iowa University's open-source 
model of the US electricity system called Agent-based Model of Electricity Systems (AMES)9 
(Sun & Tesfatsion, 2007). Arguably of the three main groups of simulation models that 
include equilibrium, dynamics systems (differential equations and discrete event 
simulations), and complex adaptive systems (agent-based modelling), agent-based models 
are better suited to modelling the energy transition given the enormous number of entities 
interacting, several distinct types of entities, and the transition is a non-equilibrium event 
(Hansen, Liu, & Morrison, 2019; Hoekstra, Steinbuch, & Verbong, 2017; Schimeczek et al., 
2023; Shinde & Amelin, 2019; Zhou, Chan, & Chow, 2007).  

 
4 Vertipaq: https://www.microsoftpressstore.com/articles/article.aspx?p=2449192&seqNum=3 
5 Gartner 2022 review: https://info.microsoft.com/ww-landing-2022-gartner-mq-report-on-bi-and-analytics-
platforms.html?LCID=EN-US 
6 Gartner 2023 review: https://www.sisense.com/reports/gartner-magic-quadrant-2023 
7 Intelligent Energy Systems’ data portal called NEO: https://iesys.com/NEO/NEO 
8 Energy Exemplar’s energy analytics and decision platform: https://www.energyexemplar.com/plexos 
9 Agent-based Model of Electricity Systems (AMES): 
http://www2.econ.iastate.edu/tesfatsi/AMESMarketHome.htm#AMESVersion 

http://www2.econ.iastate.edu/tesfatsi/AMESMarketHome.htm#AMESVersion
https://www.microsoftpressstore.com/articles/article.aspx?p=2449192&seqNum=3
https://info.microsoft.com/ww-landing-2022-gartner-mq-report-on-bi-and-analytics-platforms.html?LCID=EN-US
https://info.microsoft.com/ww-landing-2022-gartner-mq-report-on-bi-and-analytics-platforms.html?LCID=EN-US
https://www.sisense.com/reports/gartner-magic-quadrant-2023
https://iesys.com/NEO/NEO
https://www.energyexemplar.com/plexos
http://www2.econ.iastate.edu/tesfatsi/AMESMarketHome.htm#AMESVersion
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Relevantly, in a comparative analysis of ten different energy market agent-based models, 
Zhou et al. (2007) find the ‘Electricity Market Complex Adaptive System’ (EMCAS)10 the 
most comprehensive, and AMES lacks AC modelling, only models 4 of 5 EMCAS’s ISO 
functions, and only has basic bidding and planning decision-making. The only Australian 
model evaluated was CSIRO’s NEMSIM (Grozev & Batten, 2006) that focused on carbon 
emissions, and only modelled the interconnectors between states without intrastate 
transmission structure. In agreement with Zhou et al. (2007), the CSIRO found that EMCAS 
was the leading ABM for electricity markets but decided to develop their own given how 
different the NEM is to the American electricity systems. The EMCAS project seems to have 
died, given the newest documentation on their website is from 2006, and no response from 
their contact email address. The AMES project appears ongoing, with version 5 of AMES 
released July 202011 adding built-in support for the fast quadratic programming (QP) 
optimiser called CPLEX, and some bidding capability that partially addresses one of the 
earlier criticisms of AMES. However, both EMCAS and AMES were built for the US 
electricity market and lack any documentation for the NEM. This lack of documentation is 
discussed further in Section 6.2. 

Two electricity market models designed for the NEM are Prophet12 developed by Intelligent 
Energy Systems (IES) and PLEXOS developed by Energy Exemplar. Both have extensive 
documentation for application to the NEM, with sophisticated scenario analysis capabilities. 
Unlike AMES both use linear programming (LP). LP is faster than QP, but QP can offer more 
accurate modelling. The Prophet LP model can use either generator linear marginal costs or 
stack bids. The AMES QP program approximates the stack bids with a quadratic marginal 
cost function.  

There appears a gap for a well-documented QP model of the NEM with sophisticated 
scenario analysis, and data analytics, to complement the existing LP modelling platforms to 
develop pathways to zero net emissions. Both Prophet and PLEXOS have considerable 
investments in datasets and processes supporting their models. Both AMES and Prophet 
offer free academic licensing, unlike PLEXOS. AMES is no longer free to commercial users 
since version 5’s incorporation of IBM’s CPLEX, a QP optimiser, that is only free for 
academic users. IES supplies a baseline dataset of the NEM for Prophet. Iowa University 
supplies a several test bed datasets for the US electricity market. The appendix lists other 
advantages of Prophet over the case study’s simulation model. Direct comparisons between 
LP and QP models using the same input datasets and scenarios could enable confidence 
intervals and validate simulation results. Presenting the results on the same analytics 
platform for comparisons could also be beneficial for validating policy positions, given the 
scale of the investments involved. Confidence and presentation issues are discussed further 
in Section 7.2. 

2.3 Business data modelling versus predictive data modelling 
Importantly, the academic energy economics literature and BABoK and DMBoK usage of the 
term ‘model’ or ‘data model’ differs (1) ‘predictive data model’ that is this paper’s case 
study’s simulation model, and (2) ‘business data model’ that is the data structure of case 
study’s simulation model’s input and output data. Business data modelling has two 

 
10 Electricity Market Complex Adaptive System (EMCAS): https://ceeesa.es.anl.gov/projects/emcas.html 
11 AMES Version 5: http://www2.econ.iastate.edu/tesfatsi/AMESVersionReleaseHistory.htm#AMESV5.00 
12 Intelligent Energy Systems NEM model called Prophet: https://www.iesys.com/Prophet/Index 
 

https://ceeesa.es.anl.gov/projects/emcas.html
http://www2.econ.iastate.edu/tesfatsi/AMESVersionReleaseHistory.htm#AMESV5.00
https://www.iesys.com/Prophet/Index
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directions, termed ‘forward engineering’ and ‘reverse engineering’. Each engineering 
direction has three steps, forward from conceptual to logical to physical, and reverse from 
physical to logical to conceptual. This paper uses reverse then forward engineering, (1) 
reverse engineering to develop the conceptual data model from the simulation model’s 
physical data model of its non-relational output, and then (2) forward engineering to develop 
a new relational physical data model from the newly created conceptual data model. This 
conceptual data model supplies the abstract ideal form that is hardware and software-
agnostic and holds a high-level view of the entities and their attributes. In contrast, the 
physical data model has the software and hardware implementation details. The 
intermediate logical step holds details of relationships between entities and attributes but 
stays hardware and software agnostic. (DMBoK, BABoK). For instance, Guevara et al. 
(2022) highlights the need to hold the relationships between data details in his work on 
records management in organisations where it is necessary to keep the links between 
agendas, minutes, agreements, plans, budgets, progress reports and evaluation reports. 

3 Case Study: Simulation modelling of the Queensland Energy and Jobs Plan 
The Power BI data portal presents the results from simulating the effect of implementing the 
Queensland Energy and Jobs Plan (QEJP) on the Australian National Electricity Market 
(NEM).13  The QEJP outlines the Queensland Government's pathway to a clean, reliable and 
affordable energy system to provide power for generations. Key QEJP implementation 
features include: 

• 50% renewable energy by 2030 
• 70% renewable energy by 2032 
• 80% renewable energy by 2035 
• Queensland's Super Grid pathway14 

The case study models the QEJP’s key features as scenarios under differing weather 
conditions using 198 simulations as follows:  

• 9 scenarios (A to I) for the years 2030, 33, and 35 standing for different QEJP 
transmission augmentations and coal plant closure. See Section xx. 

• 2 wind levels (high and low) 
• 11 candidate years (2011 to 2022) to stand for different weather conditions and 

customer demand. 
• Product totalling 198 simulations (9 scenarios * 2 wind levels * 11 candidate 

years.) 

Each simulation outputs 42 tables. So, the total number of outputted tables across all 
simulations is 8,316. Each output table measures the effect of the QEJP on an attribute of 
the NEM. These 42 attributes grouped by 6 entities, including: 

• generators (attributes: emissions, energy generated, energy dispatched) 
• transmission lines (attributes: branch flows, branch losses)  
• nodes (attributes: spot prices, marginal losses) 
• load serving entities (attribute: pumped hydro storage) 

 
13 Queensland Energy and Jobs Plan: https://www.epw.qld.gov.au/energyandjobsplan/about 
14 Queensland's Super Grid: https://www.epw.qld.gov.au/energyandjobsplan/about/supergrid 

https://www.epw.qld.gov.au/energyandjobsplan/about
https://www.epw.qld.gov.au/energyandjobsplan/about
https://www.epw.qld.gov.au/energyandjobsplan/about/supergrid
https://www.epw.qld.gov.au/energyandjobsplan/about
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• see the data portal’s “Simulation Output” tab for details of the outputted 42 
tables/attributes, grouped by 6 entities. 

The QEJP also includes the requirements for local content in the grid future and three 
renewable energy zones (REZ). Processes for T&D within the REZ and externally are being 
formalised and while time limits are articulated, the details are still being finalised. 

However, the QEJP only articulates known future generation and transmission investment. It 
does not capture new energy ventures: their scale, location, or generation characteristics 
such as ramp speed or recharge. Neither does it capture other new generation and 
transmission investment in the other eastern seaboard states of Australia. Each newly 
completed and operational VRE adds further complexity to the model and output data. 

To simulate the effect of the QEJP on the NEM, our fellow researchers at CAEEPR used a 
modified version of Iowa University's open-source model of the US electricity system called 
Agent-based Model of Electricity Systems (AMES) (Sun & Tesfatsion, 2007). See the Data 
Portal’s page title ‘Simulation Model’ for a brief description of the modified version of AMES 
for the QEJP. Four other similar factor impact analysis on the NEM provide more details of 
the modified AMES model (1) Wind Turbines Generators (Bell, Wild, Foster, & Hewson, 
2017; Wild, Bell, Foster, & Hewson, 2015), (2) climate change (Foster et al., 2013), (3) 
carbon prices (Wild, Bell, & Foster, 2012, 2015) (4), and solar PV (Wild & Bell, 2011). 

4 Motivation, Method, and Principle-Agent Strategies 
This section synthesis data analysis for ‘business data models’ found in BABoK and DMBoK 
underpinning the development of an analytics platform based on relational databases.  

Motivating the use of techniques from DMBOK and BABOK for the QEJP case study is the 
requirement to convert the simulation results’ 8,316 tabulated text output files distributed 
among the terminal branches of a three-levelled branching hierarchy directory structure into 
a form more readily managed and analysed. 

The proposed process applied to the case study is stepped out below. These steps outline 
how to convert the 8,316 output files into a relational database housing all the simulation 
results in four “normalised” tables, linked together with the details tables as shown in Figure 
1. The largest of the four normalised tables are the half-hourly generator, node, and line 
tables, at respectively 1.2 billion, 167 million, and 244 million rows each. Uploading and 
linking the normalised tables within Power BI’s high performance relational database 
enables easy analysis and display of the tables. 

http://www2.econ.iastate.edu/tesfatsi/AMESMarketHome.htm#AMESVersion
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Figure 1: Entity Relationship Diagram of the case study’s output data 

 

To aid clarity, the following steps omit some complications for discussion in the following 
sections.  

1. Analysing the costs and benefits of alternative strategies, and principle-agent 
problem 
In this step, our approach is to analyse the costs and benefits of performing the 
alternative data ETL strategies: (1) sufficient ETL to answer a single research 
question or (2) a complete normalisation as shown in Figure 1. The first strategy is 
the more traditional approach is to perform suffice ETL to complete a single journal 
paper and the dataset languished with the researcher performing the simulation. This 
strategy more aligns with the self-interests of the researcher as an agent. In contrast, 
completing the second strategy as a full normalisation involves a major upfront cost 
in terms of the researcher’s time, with the benefit ensuing from the reuse of the data 
for multiple research questions and easier access by multiple researchers. The 
second strategy also aligns more with the principle, in that the organisational benefits 
outweigh those of the employee of the organisation paying the researcher. Sections 
5 and 6 discuss other benefits and costs, respectively, and the principal-agent 
problem. The principle or full normalisation strategy starts in the next step. 
 

2. Reverse Engineering to develop an Entity Relationship Diagram 
In this step, our approach is to develop an Entity Relationship Diagram (ERD) from 
the outputted tables (BABoK). While this is not difficult, it often takes several 
diagrams before all the relationships are listed. The conceptual data model or ERD, 
shown in Figure 1, was developed using the free open-source software called 



 

 
Page 9 

draw.io. The four main entities are the nodes, generators, transmission lines, and 
Load Serving Entities (LSE). It is important to correctly determine the ERD before the 
next steps to prevent rework. Section 5.7 discusses the elimination of two entities, 
‘NEM’ and ‘inequality multiplier’ found in the output tables. 
 

3. Cleaning, transforming, and loading the simulation output tables into a 
relational database. 
In this step, the grunt work occurs when using SQL databases helps reduce the 
burden of cleaning and transforming large text output tables. 

a. Clean each of the 198 simulation’s 42 tabulated text files while transferring 
them into a unique database per simulation. The free open-source database 
software called SQLite15 was used. The “Lite” refers to the transferability of 
the database and ease of use, rather than being under powered. For 
instance, many mobile phone apps use SQLite to store data. SQLite can 
query the 1.2 billion row generator half-hourly results table and performed 
throughout the entire process without a problem. SQLite comes with an Open 
Data Base Connection (ODBC) and other third-party connectors, so can be 
connected to many development environments. The development 
environment MATLAB was used in this case study. 

b. Transform the 42 tables within each of the 198 simulation databases into the 
4 half-hourly tables as shown in the ERD. This process is known as 
normalisation and aids computation speed and analysis (see BABOK, 
DMBOK).  The normalisation process in this case involved two main steps. 
(1) converting “wide” or “pivot” tables into “narrow” or “normalised” tables per 
attribute. This de-pivoting process involves, converting each column resulting 
in a set of primary key columns seen in Figure 1 and a single column 
containing the attribute (2), These normalised tables per attribute merged into 
an entity table with a single set of primary keys and a single column for each 
table. For instance, GenOutput table details. 

c. Transform each of the 4 half-hourly tables from each of the 198 simulation 
databases into 4 half-hourly tables within a single project database. 
 

4. Forward Engineering to develop a physical data model in Power BI. 
The next step is to apply forward engineering to implement the conceptual data 
model/ERD into a physical data model, that happens within Power BI in this case 
study. Sometimes expediency necessitates that a modified version of the ERD is 
implemented in the physical model. For instance, if the ERD is exceptional large and 
complex, the physical model is compartmentalised. 

a. Create detail tables for the four main entities using the simulation input tables. 
b. Create an inversion table between line and node detail tables to eliminate the 

many-to-many (M:M) relationship between nodes and lines. Relational 
databases are unable to handle M:M relationships. 

c. Create tables defining the scenarios and simulations. 
d. Create separate tables defining sim_year, sim_half_hour, sim_day. This 

separation of time into components may seem counterintuitive, but Power BI 

 
15  SQLite Homepage: https://www.sqlite.org/index.html and DB Browser for SQLite (sqlitebrowser.org) 

https://www.sqlite.org/index.html
https://sqlitebrowser.org/
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uses these components as filters and categories to beneficial effect within the 
relational database discussed in Section 5. 

e. Here there are two options depending on user preference. Our investigations 
have highlighted that Option 1 would be quicker to set up, and Option 2 would 
provide faster response to queries and data mining because it takes full 
advantage of Microsoft’s Vertipaq relational database compression algorithms 
and data analytics (DAX) language optimised for Vertipaq. Option 1: Create 
an ODBC link to the project database and use this ODBC link to connect to 
Power BI. Option 2: export the individual tables from SQLite to a CSV file and 
import the CSV files into Power BI. 

f. Use Power BI’s Model View to link together the tables on their ID fields, as 
shown in the ERD in Figure 1. The Model View is where the physical data 
model is designed. 

g. Use Power BI’s Data View to assign field types, whether numeric or text, and 
so forth. The Data View is where the details of physical data model are 
assigned. 
 

5. Developing graphs, tables, and reports and extending to more complex 
analytical tools. 

a. Use Power BI’s Report View to create reports that contain graphs and tables 
from the underlying physical data model. The report view is mostly intuitive. 

b. Section 5 provides more detail on using the data portal’s relational database 
with more sophisticated analytical tools. 
 

6. Including the input data in the data portal.  
Ideally, the simulation input data files would be generated from a relational database 
that would form the initial structure of the data portal’s relational database. This 
approach would extend the relational data mining capability as discussed in Section 
5.3 and enable the hybrid machine learning and simulation as discussed in Section 
5.9. However, this input file generation from a relational database approach was not 
considered in the initial version of the QEJP simulation project. The result was 
massive data redundancy in the 198 input files, each holding over 40 tables. This 
massive redundancy would increase the time to complete an ETL well beyond any 
cost benefit for the researcher completing the ETL. Section 5.7 discusses other 
simulation model improvement insights gained from applying ‘business data 
modelling’ to the simulation model input and output data for the next project. 

5 Leveraging the benefits from developing the portal 
The six steps in Section 4 describe the first stage in developing a portal that enables basic 
reporting with graphs and tables. This section describes how to leverage the above 
investment in ETL of the simulation output results tables into a relational database within a 
data analytics platform. 

5.1 The template effect and portals as an analytic layer between simulation models 
and researchers  

The data portal separates the analytics layer from the simulation layer and illustrated in 
Figure 2. This separation has at least three benefits: (1) The ability to build up the analytic 
capability through iterative copying and reuse of the platform for each new project; (2) The 
separation allows an agnostic approach to selecting a simulation model, where a simulation 
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model can be swapped between projects or the results of two or more simulation models 
compared to help confirm conclusions or supply confidence intervals; and (3) The users of 
the data portal have a familiar interface between projects, so can reduce learning time. 

Figure 2: Data portals as platforms providing a common analytical interface between 
simulation results and the research community and undergoing iterative improvements 
between projects. 

 

5.2 Using the portal’s data compression to share large, structured datasets. 
Figure 3 shows the Power BI development environment, publication pathways, and costs. 
The size of the case study’s portal in desktop development environment is 5 GB. This binary 
file compresses the more than 100 GB of imported CSV files. This small size readily allows 
the template effect discussed above and provides the opportunity to share the portal 
development environment with other researchers.  

In addition to the developer's own free personal website, Power BI lists team sites within the 
institution that the developer can publish the data portal. The developer must be a member 
of these team sites and can invite staff members with an institutional email address. 
Obtaining a public web address to the data portal requires added administration to ensure 
exclusion of any personally identifiable information. Griffith University has cybersecurity 
policies that closely guard against the release of personally identifiable information and has 
a site license for Power BI, so the cost is shared and the effort of publishing the data portal is 
reduced. This approach supplies economies of scale and load balancing of data portal 
usage. 
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Figure 3: Power BI development environment, publication pathways, and costs 

 

5.3 Relational Data Mining – Power BI Insights 
Power BI has a collection of automated algorithms that perform relational data mining called 
‘Insights’. Power BI has two methods to generate insights: (1) on the whole relational 
database, or (2) by individual tiles16 that include tables, and graphs embedded within a 
report. Importantly, these insights are outputted within a new tile that could supply further 
insights, allowing researchers to drill down into the database. The insights algorithms are 
disabled in the current public version of data portal, as is the ability to download data. In lieu 
of dynamically generating insights, sample insight tiles can be found on the data portal’s last 
tab labelled ‘Insights’. The types of insights supported by Power BI include:17 

• Category outliers 
• Change point in a time series 
• Correlations 
• Low variance 
• Majority factors 
• Outliers 
• Overall trends in times series 
• Seasonality in time series  
• Steady share 
• Time series outliers  

5.3.1 Improving Power BI’s relational data mining algorithms performance 
The Insights algorithms are unconfigurable and automated. Microsoft advises,18 “Duplicate 
data takes valuable time away from searching for meaningful patterns.” So, to increase data 
mining performance, hide duplicate columns or unhide interesting columns in tables because 

 
16 View data insights on dashboard tiles with Power BI: https://learn.microsoft.com/en-us/power-
bi/consumer/end-user-insights 
17 Types of insights supported by Power BI: https://learn.microsoft.com/en-us/power-bi/consumer/end-user-
insight-types  
18 Optimise your data for Power BI Quick Insights: https://learn.microsoft.com/en-us/power-bi/create-
reports/service-insights-optimize 

https://learn.microsoft.com/en-us/power-bi/consumer/end-user-insights
https://learn.microsoft.com/en-us/power-bi/consumer/end-user-insights
https://learn.microsoft.com/en-us/power-bi/consumer/end-user-insight-types
https://learn.microsoft.com/en-us/power-bi/consumer/end-user-insight-types
https://learn.microsoft.com/en-us/power-bi/create-reports/service-insights-optimize
https://learn.microsoft.com/en-us/power-bi/create-reports/service-insights-optimize
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the Insight algorithms only examine unhidden columns. This ad hoc solution works for this 
case study. Section 5.7 discusses permanently improving the performance of data mining 
and other advanced analytical techniques by addressing the case study’s duplicate data, 
data redundancy and other relational issues hampering data mining. 

5.3.2 Relational data mining performs issues beyond the hiding columns solution. 
The following three data mining performance issues are unamenable to the hiding columns 
solution. 

• Some scenarios show trivial difference between them. This means that the 
algorithms are searching through a billion records to find patterns when there is little 
to find. These large low information datasets resulted in the algorithms timing out with 
exhaustion. Early investigation into whether any added scenario increases 
information rather than just increasing data could aid in the decision to end the 
scenario. Early exclusion of low information scenarios would reduce the ETL time of 
repetitive data and support better data mining results. This screening could have also 
helped reduce the simulation runtime of six months. 

• The ‘generator half-hourly’ table is over a billion records, and its ‘generator details’ 
table lacks category details about the generators. This lack of categorical detail 
would contribute to algorithm exhaustion. Section 6.2 further discusses this and other 
documentation issues. 

• The lack of input data within data portal’s relational database relational will also 
reduce the potential of relational data mining. This issue also adversely affects hybrid 
machine learning and simulation modelling, as discussed in Section 5.8. 

5.4 Standard routine reporting versus what-if analysis using dynamic graphing 
There is a place for routine reports, including standard graphs. However, researchers and 
policy analysts may want to make ad-hoc what-if queries and follow up on interesting 
relationships discovered by relational data mining. So, rather than producing a new report 
and graph for every situation, developing graphs with dynamic x and y-axes offers a way to 
easily investigate ad-hoc what-if research questions. In turn, this allows flexibility for the 
policy analyst to assess options easily and quickly. Example shown in Figure 4. 
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Figure 4: Dynamic X & Y axis options shown on two top left-hand panels. The solar duck on 
the five right panels shown the average NEM spot prices, by scenario, by day type, by wind 
level, and by candidate year. 

 

(Source: ‘Dynamic Axes’ tab on the QEJP Data portal) 

The ability to build a comprehensive dynamic graph relies on the underlying data being in a 
relational database. Familiarity with DAX would be helpful to follow a 3-minute explanation.19 
The steps involve assigning a measure to the attributes of interest. The built-in measures 
include the basic statistical functions, with the possibility to develop user-defined measures. 
Applying the same measure to all the numeric attributes is possible. Allocate the attribute 
measures to a Field Parameter labelled y-axis that auto-creates a slicer/filter. Allocate the 
categories to a Field Parameter labelled x-axis that also auto-creates a slicer/filter. Position 
these Field Parameters X-Axis and Y-Axis into Graph Tiles’ x and y fields. 

5.5 Leveraging existing normalise data to populate Geographic Information Systems 
Power BI reports can also embed ESRI ArcGIS maps within tiles to display locational 
information, for an example, see Figure 5. ESRI’s automated location of longitude and 
latitude for placenames does not work inside the Power BI tile when posting to a public 
website. The ESRI map process for Power BI tiles requires the following extra steps:  

(1) Write code to download latitudes and longitude from ‘Open Street Map’20 based on 
placenames.  

(2) Insert new latitudes and longitudes columns in the ‘node details’ table shown in Figure 1. 

(3) Copy latitudes and longitudes data into the ‘node detail’ table, and 
 

19 Dynamic X and Y axes implementation using DAX: 
https://www.youtube.com/watch?v=1eurc0EY2Xg&list=PL0hL62RHC6QHgQuMu_MWnDIpeUPKsYnud&index=
7 
20 Open Street Map: https://nominatim.openstreetmap.org/search 

https://www.youtube.com/watch?v=1eurc0EY2Xg&list=PL0hL62RHC6QHgQuMu_MWnDIpeUPKsYnud&index=7
https://www.youtube.com/watch?v=1eurc0EY2Xg&list=PL0hL62RHC6QHgQuMu_MWnDIpeUPKsYnud&index=7
https://nominatim.openstreetmap.org/search
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(4) Place the latitudes and longitudes fields onto a mapping tile. 

Other issues encountered include: (1) Power BI’s ESRI’s tiles automated geolocation based 
on placenames failed on public websites; (2) ‘Open Street Map’ was unable to assign a 
latitude and longitude to the node named ‘South East South Australia’ that was renamed Mt 
Gambier and (3) Gaining access to use ESRI within Power BI was most challenging, having 
to work through three levels of security access from ESRI, Power BI, and my institution.  

In addition to incorporating the latitudes and longitudes into the ‘node details’ table, the full 
functionality of the map relies on the underlying relational database. For instance, creating 
animations from the half-hourly datasets rely on the one-to-many relationship between the 
entity details and half-hourly tables. Embedded ESRI ArcGIS maps supply animation 
functionality.21 This functionality can be extended to transmission flows. 

Figure 5: ArcGIS map embedded in Power BI showing the nodes in the case study’s 
simulation model. 

 

(Source: ‘Nodal Map’ tab on the QEJP Data portal) 

5.6 Maximising reuse of filters and categories using relational databases 
One of the important aspects of the relational database design shown in Figure 1 is the 
consideration of where to place filters for graphs and tables. A well-designed relational 
database allows the placement of filters that affect the entire database. For instance, a filter 
in the table ‘sim year’ will select that year for every record in the database. This allows the 

 
21 Embedded ESRI ArcGIS maps supply animation functionality: 
https://www.youtube.com/watch?v=CywPHwK1-
1c&list=PL0hL62RHC6QHgQuMu_MWnDIpeUPKsYnud&index=2 

https://www.youtube.com/watch?v=CywPHwK1-1c&list=PL0hL62RHC6QHgQuMu_MWnDIpeUPKsYnud&index=2
https://www.youtube.com/watch?v=CywPHwK1-1c&list=PL0hL62RHC6QHgQuMu_MWnDIpeUPKsYnud&index=2
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reuse of the same filter throughout the entire data portal. This reusability is timesaving and 
reduces the possibility of errors. Correctly, defining the filters is also essential for the 
functionality of dynamic graphs and embedded ESRI map.  

5.7 Reducing workflow time and disk space and increasing relational data mining 
and other advanced analytics performance. 

The simulations in this case study took 6 months to run and extracting, transforming, and 
loading the data into the portal and its design took 3 months. How to reduce this 9-month 
workflow? Developing an ERD, and normalising data are two business data modelling 
techniques that offer a clear view of the data structure, so instructive in cutting data 
redundancy. They also act like a prism to shed new light on improving the simulation model’s 
processes. Four areas for improving the predictive data model include cutting data 
redundancy; geographically aligning the output data; aligning the data temporally; and 
breaking down the composite entities into their components. Each of these is discussed 
below. 

5.7.1 Cutting data redundancy using calculated field 
• The entity ‘transmission line half-hourly’ attributes ‘Branch Flow’ and ‘Branch 

Marginal Losses’, and the node attribute ‘Marginal Losses’ have AEMO variants, see 
Figure 1. These AEMO variants have different directional flows. These attributes are 
redundant, as the AEMO variants are simply negative if the AEMO line flow differs 
from the simulation model’s default direction. A vector of positive and negatives ones 
in the ‘Line Details’ and ‘Node details’ tables could hold all the information needed. 
Making this change could cut outputting and processing 594 files (3/42×8,316) and 
make the AEMO flow direction information explicit. If required, the Power BI supplies 
calculated fields for such simple relationships.  

• The four Load Serving Entity (LSE) attributes ‘PHES Charging Loads’, ‘Pump Hydro 
SOC’, ‘Storage Charging Loads’, and ‘Storage SOC’ all have a summed by node 
variant. Relational databases are well-designed to sum over the one-to-many 
relationship between node and LSE. Making this change could cut outputting and 
processing 792 files (4/42×8,316) without any loss of information. 

5.7.2 Aligning output data geographically 
The case study’s simulation model balances electricity supply and demand every half hour, 
using flow constraints on transmission lines to balance the electricity supply from the 
generators and the demand from LSEs. These three entities lines, LSEs and generators are 
related via nodes, see the ERD in Figure 1. Therefore, any other entity is an aggregate 
calculated within the simulation model. For instance, the six NEM attributes prefixed with 
‘min Total Variable Cost’ are state and NEM aggregates of the generator’s ‘min Total 
Variable Cost’. Rewriting the simulation model’s code to output a single generator ‘min Total 
Variable Cost’ table would open research questions on minimum variable costs by generator 
and enable relational data mining. Making this change could also cut outputting and 
processing 990 files (5/42×8,316) while gaining information. 

5.7.3 Aligning output data temporally 
The case study’s simulation model balances electricity supply and demand every half hour in 
this case study. Therefore, any period other than half-hourly, such as the daily ‘Carbon 
Emissions’ by generator, is an aggregate calculated within the simulation model. Rewriting 
the simulation model’s code to output the carbon emission very half hour would allow 
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combining carbon emissions with the other half-hourly generator attributes and open 
research questions on emissions and time of day effects and improve relational data mining. 

5.7.4 Breaking down composite entities into its components 
The inequality multiplier entity has three attributes, ‘Inequality Multiplier Upper’, ‘Inequality 
Multiplier Lower’, and ‘Inequality Multiplier’. These three attributes are shadow prices 
associated with relaxing the upper and lower constraints and their difference for the lines 
and generators. Hence, splitting the inequality multiplier entity between the line and 
generator entity could eliminate it as an unnecessary entity. The inequality multiplier entity’s 
three attributes ‘Inequality Multiplier’, ‘Inequality Multiplier Upper’, and ‘Inequality Multiplier 
Lower’ would become attributes of the line and generator entities to enable relational data 
mining and simplify analysis more generally. The size of the CSV file for the inequality 
multiplier is 100 GB. The inequality multiplier as an entity was omitted from the data portal 
because it would double the size of the portal’s binary file, increase the portal’s latency, and 
shadow pricing may hold little interest for most people. 

5.8 Using machine learning on simulation modelling results of high-frequency 
parameter sweeps to find optimal development pathways.  

The literature review discusses hybrid machine learning and simulation modelling as an 
approach to solve computationally intensive issues such as modelling optimal development 
pathways at sufficiently high frequency to provide realistic modelling of storage and 
generation to include those relying on high-frequency settlement for financial viability. The 
lack of input data in the data portal discussed in Step 6 of Section 4 and the other data 
redundancy, and geographic and temporal misalignment discussed in Section 5.7 make the 
current platform’s database unsuitable for this hybrid technique.  

6 Other Costs 
As discussed, the time to complete the ETL and develop the was 3 months and to complete 
the simulations was 6 months. These costs are likely to decrease with each iteration of the 
data portal and rewriting the simulation model to incorporate the insights gathered from the 
business data modelling. Entities within a principle-agent relationship can perceive the 
following other costs differently and adopt different strategies. 

6.1 Hosting and software 
The university has a site license for Power BI that allows publishing Power BI data portals to 
the web. There is also the cost of Premium BI development environments that allow 
developers to publish to group sites and the web. The university distributes these costs 
across the university, and a shared site allows the balancing of access load. For those 
working where the employing organisation does not have a site licence, the cost of Premium 
Power BI needs to be considered.  

6.2 Documentation and Principle-Agent problem. 
Documentation comes at a cost but enables the public or other researchers to use the 
simulation model. Publishing to the web forces a more disciplines approach to developing 
documentation.  

There are two forms of documentation to consider, the first category of documentation is that 
essential to the functionality of the relational database, and the general second reference 
material found in PDFs or other static media. The case study has inadequacies in both forms 
of documentation. For instance, under the first category of documentation, functionality: the 
generator details table lacks attributes for generator type. Lacking this attribute hinders 
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relational data mining. Under the second category of documentation, general reference, the 
case study’s simulation model is a modified version of the US electricity system. 

The documentation issue is related to the principle-agent problem and ETL strategy 
discussed in Step 1 of Section 4. The best strategy as a self-interested individual researcher 
or agent is to supply only sufficient documentation to publish in a journal. This approach is 
consistent with strategy 1. The best strategy for an organisation or principle paying for the 
researcher is to have complete documentation that is consistent with Strategy 2. 

7 Discussion 
The energy transition presents an enormous modelling challenge to inform policy and 
investment decisions during the next 30 years. Researching and modelling the NEM will 
become more challenging during the energy transition and would benefit from big data 
analytics, standardisation, and specialisation to gain economies of scale. Numerous drivers 
are contributing to the increasing challenge, including the shift from large, centralised 
baseload load and peaking generation and mono-directional T&D designed to 
geographically dispersed VRE and renewable storage where the distinct between generators 
and consumers has become blurred requiring a bidirectional T&D design. To help meet this 
challenge, this paper argues and outlines the use of data analytic platforms to help share 
modelling results and enable advanced analytics on the modelling results. Five approaches 
to amplify the benefits of data analytics platforms to help meet the energy transition 
modelling challenge include, increasing economies of scale, building on open-source 
models, model averaging, rapid analysis, and iterative design (RAID), integrating simulation 
model and analytics platform workflows. 

7.1 Increasing research economies of scale to meet the energy transition modelling 
challenge. 

Meeting the challenge of modelling the energy transition requires the ability to share costs 
and the willingness to work collaboratively within large teams to contribute to major long-
term research programs to shape future generations. Compared to other disciplines, 
economics has a relatively small number of researchers in a project. For example, the pure 
economics paper with the largest number of authors is 17 (Coenen et al., 2012). The 
economics paper with the largest number of collaborative research is 22 (Benjamin et al., 
2012). The physics paper with the largest number of authors exceeds more than 5,000 
authors. This situation indicates the potential for a more industrial-sized workflow, 
specialisation, standardisation to gain economies of scale. Whether finding a more precise 
estimate of the size of the Higgs boson or optimal development pathway, both require 
appropriate social and technical infrastructure. 

One of the less glamorous aspects of fermenting the industrial revolution was the 
development of standards to allow the purchase of standard parts to develop new products. 
For instance, standardised bolts. Researchers modelling the energy transition bolt together 
datasets from different sources, including meteorological and energy. The time spent 
extracting, transforming, and loading these datasets to merge them could be better used 
analysing the results. Embedding the BoM and AEMO as part of a research value added 
chain or workflow could provide benefit to modelling the energy transition. Some simple 
value gains include transforming the datasets at the BoM and AMEO by using Excel's 
maximum record limit of one million records to compose yearly datasets rather than monthly. 
More ambitious value gains include the BoM providing weather station datasets with 
interpolated values in addition to the raw datasets. Another ambitious value-added gain 
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includes the AEMO and BoM providing their datasets within SQLite, a free open-source 
database management system, that has a maximum database size of 281 terabytes, a 
theoretical maximum number of rows per table of 264 (1.8 × 1019), default maximum number 
of columns per table of 2,000, and maximum number of tables per database is a little over 2 
billion.22 

7.2 Repeatability, predictability, sound argument, and model commercialisation 
If the results of simulations are not replicable, any policy decisions based on the simulations 
may be misinformed. Sharing the input data and results with other researchers offers closer 
scrutiny and detection of errors, potentially prevents misinformed policy decisions. The 
principle-agent problem arises, as it can be in the interest of the researcher to keep input 
data or simulation model source code undisclosed. 

Similarly, some commercial simulation model approaches are at odds with academic 
expectations of repeatability, predictability, transparency, and sound argument. The interests 
of the commercial supplier of simulation models are served by non-disclosure of source code 
and input data. The NEM models have many variables, enabling tuning the model to fit the 
data. Analogous to first order predicate logic, a true conclusion requires both a true premise 
and sound argument, a simulation model’s true output requires both accurate input data and 
sound assumptions in the code. A well-tuned model may well provide high predictive 
performance for small changes in variables, where the ‘arguments’ in the code are 
conditionally valid for small changes in variables. However, the energy transition is anything 
but a small change in variables. This situation makes the ability to check the source code for 
sound argument important. Noting, open-source code that would allow checking for sound 
argument is not synonymous with free. For example, neither Energy Exemplar nor IES’s 
NEM model are free for commercial users. IES’s open-source code approach contrasts with 
Energy Exemplar's closed source-code approach. Iowa University’s AMES model is both 
free and open source, except for the inbuilt QP optimiser from IBM. However, AMES, unlike 
Prophet and PLEXOS, only models DC transmission flows and lacks a standard NEM 
baseline configuration. 

7.3 Selecting the ‘best model’ versus averaging models and retaining information 
The standard econometric approach is to select the ‘best model’ that comprises a ‘best fit’ 
weighted by some penalty for increasing number of variables. This approach works well 
under certain conditions but is ill-suited to the energy transition that has no historical 
precedent to find a ‘best fit’ and with the NEM models having many variables that allow 
finetuning the models for the current NEM structure. A structure that will cease to exist 
during the transition. 

Model averaging provides an alternative approach to model selection. Bates and Granger 
(1969) introduce ‘model-averaging’ to improve forecasting accuracy. Model averaging 
involves using the same input data in different simulation models and averaging the different 
models’ outputs. Clemen (1989) reviews the combining forecasts literature and concludes 
that (1) combining multiple individual forecasts improved forecast accuracy, and (2) simple 
combinations of models often work well, compared to more complex methods. His review 
discusses combining differing models to improve forecast accuracy, or ‘model-averaging’. 
Model-averaging has an extensive literature (Fernández, Ley, & Steel, 2001; Garratt, Lee, 
Mise, & Shields, 2008; Garratt, Lee, Pesaran, & Shin, 2003; O'Hagan, 1995). In addition to 

 
22 SQLite database limits: https://www.sqlite.org/limits.html 
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forecast accuracy, other advantages over model selection include retaining information and 
more robust confidence intervals. 

Ideally, equal-weighted-model-averaging AMES, Prophet and PLEXOS would provide more 
robust scenario analysis. However, the preference for open-source models to check 
arguments would discount PLEXOS’s inclusion. Furthermore, PLEXOS neither replied to a 
query about academic licensing nor provided any academic licensing information on its 
website. Consequently, PLEXOS was excluded from planned model averaging and 
comparative analysis. AMES is free for academic and commercial use; however, its 
optimiser is only free for academic use. Prophet is free for academic use; however, its high-
performance LP optimisers require commercial licenses. In summary, model averaging 
AMES and Prophet could offer more robust confidence intervals and testing different model 
averaging techniques using Power BI’s calculated fields would be straightforward, as would 
be other comparative analysis. 

7.4 Applying Rapid Analysis and Iterative Design principles to scenario selection. 
The case study’s simulations took 6 months to complete, and the development of the data 
analytics platform required a further 3 months. The data mining algorithms looking for 
relationships in the results’ data timed-out with exhaustion.  

Cutting data redundancy is one method to reduce workflow time and improve data mining 
performance, discussed in Section 5.3. This issue is amenable to re-coding the simulation 
model to output tables in a different structure or omit and use calculated fields in the 
analytics platform.  

Cutting repetitive or similar scenarios is another method to reduce workflow times and 
improve data mining performance, discussed in Section 5.3.2. This issue is not amenable to 
re-coding the simulation model, but is amenable to applying Rapid Analysis and Iterative 
Design (RAID) Principles (Wilson, 1999) using an analytics platform. 

RAID is the predecessor to Agile. RAID uses early prototyping to gain feedback to change 
design iteratively. Developing the analytics platform before the simulations supplies the 
ability to perform sensitivity analysis on each new simulation and if a scenario lacks any 
significantly different impact to other scenarios, exclude it from the project. This approach 
could help reduce workflow time and data mining exhaustion and allow design changes to 
investigate other more interesting scenarios. RAID principles to scenario selection could be 
further extended by using Prophet’s faster LP to select scenarios rather than AMES’s slower 
QP. Furthermore, the application of the template effect discussed in Section 5.1 finds a good 
fit with the RAID principles.  

7.5 Iterating the data portal and integrating the AMES simulation model 
Prophet and PLEXOS have sophisticated scenario parameter sweeping, comparative 
scenario analysis, and integrated analytics platforms. These features are lacking in the 
original AMES that produces a single output file per simulation input file intended for manual 
analysis. The modified NEM version of AMES used in this case study produced 8,316 output 
files. To bring AMES closer to the functionality of Prophet and PLEXOS, three major factors 
need addressing, including (1) automated generation of parameter sweep input files, (2) 
automated cleaning, transforming, loading of simulation output files, and (3) integration into a 
data analytics platform.  

http://www2.econ.iastate.edu/tesfatsi/AMESMarketHome.htm#AMESVersion
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7.5.1 Automating the generation of parameter sweep input files. 
The case study’s simulations were concluded before the data portal was envisioned. As 
discussed in the Section 4 (Step 6), there is massive data redundancy in the input files, 
making their inclusion in the data portal too expensive. Automating the generation of AMES 
input files would reduce data redundancy and enable their inclusion of the input data in the 
portal to enable more extensive machine learning and other analytical techniques. Some 
pre-project planning is required to realise the full potential of the data portal’s advanced 
analytics.  

Given the data analytic platform, Power BI, requires the input data in a relation database 
format, generating the AMES’s simulation input data files from a relational database could 
reduce workflow time and handling errors. Furthermore, SQLite claims that it can read and 
write data about 35% faster than the underlying file system.23 The auto generation of 
parameter sweeps was discussed in Section 4 (Step 6). Other workflow options require 
consideration. 

7.5.2 Automating the cleaning, transforming, loading of simulation output files. 
Given the destination of the AMES’s output files is a relational database in Power BI, 
recoding the AMES model to output its simulation tables directly to an SQLite would 
eliminate post-processing cleaning and a transformation step. For instance, for the case 
study, this recoding would reduce the need to clean and transform 8,316 tabulated text 
output files distributed among the terminal branches of a three-levelled branching hierarchy 
directory structure into 198 database files within a single directory. This recoding would 
reduce logistics with the added advantage of reducing the possibility of mistakes. 

7.5.3 Integrating AMES and Prophet results for comparison into a data analytics platform 
The case study has illustrated the low technical threshold to complete a data analytics 
platform using Power BI and discussed the ample scope for further development. The 
benefits of the relational database underpinning Power BI include easier model comparison, 
model averaging, and hybrid simulation modelling and machine learning. This approach is 
standard in meteorology where in cyclone tracking, models from several countries are used 
to model cyclone pathways and then compared to provide the average or most likely 
pathway.24  Completing the data analytics platform was useful in determining the potential 
for Power BI to aid researchers in the energy transition and identifying strengths and 
weakness in the AMES model. 

8 Conclusion 
There is a significant upfront cost in time in developing a relational database and data portal 
for a simulation project’s results; however, the advantages of relational databases and 
portals are many.  Pre-project planning and agreement on ETL strategy is needed to realise 
the full potential of the advanced analytics of using a data portal and avoid principle-agent 
problems. Four forms of benefit include: (1) The immediate benefit from the reuse of the data 
to answer further research questions, whether by the original researcher or by other 
researchers. This reuse may increase as researchers become more accustomed to using 
other’s simulations results. (2) The development of the relational database and data portal 

 
23 SQLite 35% faster than the underlying file system: https://www.sqlite.org/fasterthanfs.html 
24 World Meteorology Organisation: Tropical Cyclone Forecaster 
Websitehttps://severeweather.wmo.int/TCFW/ 
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becomes a feedback mechanism to supply insights into improving the simulation model. (3) 
The upfront cost per project will decline given learning curve and template effects and 
separating the analytical and simulation modelling platforms. (4) Transforming simulation 
output results into a relational database allows reanalysis with other techniques such as 
relational data mining and machine learning. 
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11  Advantages of Prophet over the case study’s simulation model  
The free academic simulation model of the NEM called Prophet is much faster and has more 
functionality than the case study’s simulation model, including. 

• switching between 5-minute, half-hourly and hourly trading periods, using tick-
boxes. 

• modelling expansion optimisation 
• switching between supply side modelling options, such as, bid stacks, SRMC, … 
• demand side: DSM and proxy for price sensitive demand   
• modelling multiple trading techniques and options 
• graphical user interface (GUI) to easily add and modify network structures. 
• Selectable output of reports to reduce volume of outputted data 
• Selectable levels of reporting aggregation. 
• Selectable aggregated reporting between simulations 
• macros to perform parameter sweeps without the need to create individual input 

files for each simulation. 
• Extraction and transformation of outputted data is much easier. 
• Prophet is an industry standard package that enables easier results swapping 

and knowledge transfer. 
• extensive documentation 
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