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Abstract 

The value of Stochastic Frontier Analysis (SFA) increases when the level of accuracy at which it estimates 

unit‐specific inefficiencies improves. Conventional estimation of SFA unit inefficiency is based on the 

mean/mode of the inefficiency, conditioned on the composite error. It is known that the conditional mean 

of inefficiency shrinks towards the mean, rather than the unit inefficiency. In this paper, we analytically prove 

that the conditional mode cannot accurately estimate unit inefficiency, either. We propose regularized 

estimators of unit inefficiency that restrict the unit inefficiency estimators to satisfy some a priori 

assumptions, and derive the closed form regularized conditional mode estimators for the three most 

commonly used inefficiency densities. Extensive simulations show that, under common empirical situations, 

e.g., regarding sample size and signal‐to‐noise ratio, the regularized estimators outperform the conventional 

(unregularized) estimators when the inefficiency is greater than its mean/mode. Based on real data from the 

electricity distribution sector in Sweden, we demonstrate that the conventional conditional estimators and 

our regularized conditional estimators provide substantially different results for highly inefficient companies. 
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1. Introduction 

Since the publication of the papers by Aigner et al. (1977) and Meeusen and Van Den Broeck (1977), 

stochastic frontier analysis (SFA) has been a common approach to gain deeper insights into the potential for 

productivity improvement (Kumbhakar et al., 2020) and cost reduction in monopolized markets (Bogetoft 

and Otto, 2011). 

For unit inefficiency, the standard estimation approach was developed by Jondrow, Lovell, Materov and 

Schmidt (1982), acronymed “JLMS” in the SFA literature. The JLMS estimator is based on the mean (and the 

mode) of the inefficiency conditioned on the composite error when the inefficiency is drawn from a half‐

normal distribution. Later studies have extended the JLMS estimator to situations when inefficiencies are 

drawn from an exponential distribution (Kumbhakar and Lovell, 2000) and a truncated normal distribution 

(Battese and Coelli, 1988).  

Despite its widespread use, the JLMS estimator has been criticized. Specifically, Wang and Schmidt (2009) 

explain that it shrinks the inefficiency towards its mean, leading to a distribution that is different from that 

of the unconditional inefficiency. Naturally, the mean and mode are not fully representative characteristics 

of the conditional distribution of the inefficiency, especially if each unit is observed only once. Thus, in the 

cross‐sectional case, each conditional estimator produces an inconsistent estimator of the inefficiency. 

Moreover, this estimator is conditioned on an estimated composite error rather than on the composite error 

itself, as explained by Horrace (2005). More details are provided by Kumbhakar et al. (2015) and Kumbhakar 

et al. (2018). Therefore, the sampling distribution of the conditional estimator is different from the 

theoretically assumed conditional distribution of the inefficiency. Consequently, the inefficiencies are 

inaccurately estimated, something regulatory agencies have stated as an impediment for the practical use 

of SFA (e.g., Badunenko et al., 2012; Stone, 2002 and Tsionas, 2017). This is also illustrated in a simulation 

study by Andor et al. (2019), where they show that both the SFA and Data envelopment analysis (DEA) 

methods used by regulators underestimate the true efficiency values. One way to reduce this problem is to 
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combine the SFA and the DEA (Andor et al. (2019) and Tsionas (2021)), but such combinatory approaches are 

not able to eliminate the underestimation problem.  

The approach presented in this paper is similar to the combinatory approach in that it can be viewed as a 

weighted average of unit inefficiency estimators, but in contrast, it is a weighted average of the sample 

(industry), solely based on the SFA approach. The proposed regularized estimators can be used as stand‐

alone estimators along with any other estimators in a combinatory approach. In addition, the regularized 

estimators described here can be used in a variety of situations but in this paper, we limit ourselves to 

studying unit inefficiency estimation in a cross‐sectional context, using the classical stochastic frontier model 

suggested by Aigner et al. (1977).  

We propose a regularized (constrained) estimator based on Bayesian risk (expected loss) that restricts the 

inefficiencies to satisfy some underlying theoretical (and/or intuitive) conditions. Conditions on the moments 

are common options for the imposed constraints upon the likelihood functions (e.g., Hall and Presnell 

(1999)). Our regularized estimators are easily calculated, e.g., they can be the JLMS estimators, with imposed 

constraints on the first and the second moments of the conditional distribution of the inefficiency.  

The proposed methodology is different from other recent contributions in the field. For example, Kumbhakar 

et al. (1991) suggest a single step procedure for the estimation of unit inefficiency when they deploy firm‐

specific determinants of the inefficiency in the maximum likelihood estimation of the SFA model. They show 

that ignoring the determinants would lead to biased and inconsistent estimators. However, firm‐specific 

determinants are often unobserved, and even unknown. Another recent contribution is the use of non‐

parametric and semi‐parametric estimation methods. However, these methods are different from what we 

do their incorporation into SFA, for example by Kumbhakar et al. (2007), use the JLMS estimator for 

estimating firm‐specific inefficiency. Another avenue of research is the use of quantile regression into the 

estimation of the production function (Bernini et al. (2004), Wang et al. (2014), and Behr (2010)). However, 

this approach introduces a new challenge, specifically that one needs to pay more attention to the selection 
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of appropriate quantiles which can be different for distinct densities of the composite error (Jradi et all. 

(2019)). In addition, no post‐estimation of firm‐specific inefficiencies exists when using the quantile 

regression approach (Kumbhakar et al., 2020).  

Under mild assumptions, e.g., the log‐concavity of distributions that covers most of the distributions used in 

the SFA literature, we analytically investigate some properties of the conditional mode (maximum a 

posteriori probability estimator) and give a general formula for the conditional mode and its functions that 

can be used with any inefficiency density. Next, we derive a regularized conditional mode estimator with the 

three most commonly used inefficiency densities, i.e., the half‐normal, truncated normal and exponential 

distributions. The proposed unit inefficiency estimation is considered a restricted or penalized estimation 

method that improves the estimation of unit inefficiency based on the conditional mean/mode.  

An extensive simulation study is conducted, with varying factors, such as the sample size, inefficiency density 

and signal‐to‐noise ratio (relative variation of the inefficiency to the variation of random shocks). The 

simulation results show that the regularized estimators outperform the conventional (unregularized) 

estimators when the inefficiencies are greater than their mean/mode, especially with a larger signal‐to‐noise 

ratio. As the unregularized conditional mean/mode shrinks towards the mean/mode, the simulation results 

show that the regularized conditional mean/mode shrinks less towards the mean/mode, especially for larger 

inefficiency scores.  

We apply both unregularized and regularized estimators to data from the Swedish electricity distribution 

sector. The results show that the estimated inefficiencies from the two regularized and unregularized 

estimators are substantially different, particularly for firms that are in the right tail of the inefficiency 

distribution. Considering the results from the simulation study, supported analytically (Theorem 3), we 

recommend that regulators use the results from the regularized estimators for highly inefficient firms.  

The remainder of this paper is structured as follows. In section 2, we derive a general formula for the 

conditional mode of the inefficiency and analytically investigate some of its properties under mild 
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distributional assumptions of unconditional inefficiency. Next, the regularized estimator is discussed and 

formally derived for both production and cost functions. Derivations are presented for inefficiency under 

three different distributional assumptions. In section 4, both regularized and unregularized estimators are 

evaluated using extensive Monte Carlo simulations. In section 5, we present an application based on real 

data. The data represent electricity distribution firms in Sweden, and we estimate the cost inefficiency, which 

is used by the Energy Markets Inspectorate as an input in their revenue cap regulation. Section 5 concludes 

the paper and discusses avenues for future research.  

 

2. Theory 

A stochastic frontier, cross‐sectional, production model can be formulated as 

𝑦𝑦𝑖𝑖 = 𝒙𝒙𝑖𝑖′𝜷𝜷 + 𝑣𝑣𝑖𝑖 − 𝑢𝑢𝑖𝑖, 

where 𝑖𝑖 indicates the unit, 𝑦𝑦𝑖𝑖  is the observed output, 𝒙𝒙𝑖𝑖 is the given 𝑘𝑘 × 1 vector of inputs, 𝑢𝑢𝑖𝑖 is the 

unobserved inefficiency, 𝑣𝑣𝑖𝑖 is the unobserved noise and 𝜷𝜷 is an unknown 𝑘𝑘 × 1 vector of functional 

parameters. 

The conventions of a simple parametric cross‐section SFA assume i.i.d. random noise terms with a density 

function 𝑔𝑔𝑣𝑣(𝑣𝑣) that is symmetric around zero and i.i.d. nonnegative inefficiencies with a density function 

𝑓𝑓𝑢𝑢(𝑢𝑢). For example, the most common (semistandard) 𝑔𝑔𝑣𝑣(𝑣𝑣) is assumed to be the density of a zero‐mean 

normal distribution 𝑁𝑁(0,𝜎𝜎𝑣𝑣2)0F

1, and the equivalent candidates for 𝑓𝑓𝑢𝑢(𝑢𝑢) are assumed to be the densities of a 

half‐normal distribution 𝑁𝑁+(0,𝜎𝜎𝑢𝑢2), an exponential distribution 𝐸𝐸𝐸𝐸𝐸𝐸(𝜎𝜎𝑢𝑢) with scale parameter 𝜎𝜎𝑢𝑢, and a 

truncated normal distribution 𝑁𝑁+(𝜇𝜇,𝜎𝜎𝑢𝑢2) with a general 𝜇𝜇 that can take any real number.  

The maximum likelihood estimation of an SFA model is based on maximizing the likelihood of the i.i.d. 

composite errors 𝜀𝜀𝑖𝑖 = 𝑣𝑣𝑖𝑖 − 𝑢𝑢𝑖𝑖 with the density function 

                                                            
1 Other zero‐mean symmetric distributions have been suggested, such as Laplace (Horrace and Parmeter, 2018; 
Nguyen, 2010), but they are less common in applications.  
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ℎ𝜀𝜀(𝜀𝜀) = � 𝑓𝑓𝑢𝑢(𝑢𝑢) 𝑔𝑔𝑣𝑣(𝑢𝑢 + 𝜀𝜀) 𝑑𝑑𝑢𝑢
+∞

0

 

where the composite error 𝜀𝜀𝑖𝑖 is 𝜀𝜀𝑖𝑖 = 𝑦𝑦𝑖𝑖 − 𝒙𝒙𝑖𝑖′𝜷𝜷. 

It has been argued, for example, by Greene (1990) and Ruggiero (1999), that the selection of different 

inefficiency density functions should not result in noticeable differences between the fit of the SFA models, 

or the ranks of the estimated conditional unit inefficiency scores. However, they may differ in the magnitude 

of the inefficiency scores, especially for highly inefficient units.  

As mentioned in the Introduction section, the most common way of scoring unit inefficiency is through the 

method proposed by Jondrow et al. (1982). For the 𝑖𝑖th unit, the inefficiency is scored as 𝑢𝑢�𝑖𝑖 = 𝐸𝐸(𝑢𝑢|𝜀𝜀𝑖𝑖) or 𝑢𝑢�𝑖𝑖 =

𝑀𝑀𝑀𝑀𝑑𝑑𝑀𝑀(𝑢𝑢|𝜀𝜀𝑖𝑖) using the following conditional density function of inefficiency 𝑢𝑢 given a composite error 𝜀𝜀. 

𝑓𝑓𝑢𝑢|𝜀𝜀(𝑢𝑢) =
𝑓𝑓𝑢𝑢(𝑢𝑢) 𝑔𝑔𝑣𝑣(𝑢𝑢 + 𝜀𝜀)

ℎ𝜀𝜀(𝜀𝜀)  

However, as stated by Kumbhakar et al. (2020), the conditional score of the inefficiency is an estimator of a 

characteristic (mean or mode) of the conditional inefficiency rather than of the inefficiency itself. Such a 

distinction between the two remains unchanged regardless of the sample size. In fact, it depends on the size 

of the noise variance rather than on the sample size. This fact is proven by Wang and Schmidt (2009) for the 

conditional mean when the inefficiency follows a half‐normal distribution, and they argue that it also holds 

when the inefficiencies are drawn from exponential and general truncated normal distributions. However, 

such argument has not been proven for the conditional mode, although there is a general belief in the SFA 

literature that the JLMS estimators, whether mean or mode, are shrinkage estimators.  

In in Theorem 3, we provide a proof that, under mild distributional assumptions, the conditional mode of the 

inefficiency analogously shrinks the inefficiency score towards the mode of the inefficiency. This means that 

the conditional mode estimator underestimates large inefficiencies. It also overestimates the inefficiencies 
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of almost fully efficient firms when the inefficiency mode is a positive number (as it is the case for a truncated 

normal distribution with location parameter 𝜇𝜇 > 0).  

The conditional mode score is the maximum a posteriori probability estimator, which is the mode of the a 

posteriori distribution, i.e., 𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀(𝑢𝑢|𝜀𝜀𝑖𝑖) = Argmax
𝑢𝑢∈ℝ+

𝑓𝑓𝑢𝑢|𝜀𝜀(𝑢𝑢) = Argmax
𝑢𝑢∈ℝ+

�𝑓𝑓𝑢𝑢(𝑢𝑢)𝑔𝑔𝑣𝑣(𝑢𝑢 + 𝜀𝜀)�, where ℝ+ denotes 

the nonnegative real numbers. According to the laws of total mean and variance, we have 𝐸𝐸(𝐸𝐸(𝑢𝑢|𝜀𝜀𝑖𝑖) ) =

𝐸𝐸(𝑢𝑢), but 𝑉𝑉𝑉𝑉𝑉𝑉(𝐸𝐸(𝑢𝑢|𝜀𝜀𝑖𝑖) ) = 𝑉𝑉𝑉𝑉𝑉𝑉(𝑢𝑢) − 𝐸𝐸�𝑉𝑉𝑉𝑉𝑉𝑉(𝑢𝑢|𝜀𝜀𝑖𝑖)� < 𝑉𝑉𝑉𝑉𝑉𝑉(𝑢𝑢). However, arguments analogous to the total 

mean and variance do not generally hold for conditional mode scores. In other words, the mode (or mean) 

of the conditional mode score is not generally equal to the mode (or mean) of the inefficiency itself. The 

variance of the conditional mode score can also be larger than the variance of the inefficiency itself.2 In 

Theorem 1, we give a general formula to calculate the conditional mode of the inefficiency for any 

inefficiency density function that fulfills the mild assumptions stated below. 

Theorem 1: Suppose the noise of the production function in (1) is 𝑣𝑣~𝑁𝑁(0,𝜎𝜎𝑣𝑣2). If the log-concave inefficiency 

density 𝑓𝑓𝑢𝑢(𝑢𝑢) is nonzero and continuously infinitely differentiable (analytic function) for all 𝑢𝑢 ≥ 0, such that 

�d
2 ln [𝑓𝑓𝑢𝑢(𝑢𝑢)]

d𝑢𝑢2
� < 𝜎𝜎𝑣𝑣−2, then the inefficiency mode score conditioned on the composite error 𝜀𝜀 is 𝑢𝑢� =

𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀(𝑢𝑢|𝜀𝜀) = max {0,𝑢𝑢�}, where  

𝑢𝑢� = −𝜀𝜀 −�
(𝜎𝜎𝑣𝑣2)𝑘𝑘

𝑘𝑘!
�
𝜕𝜕
𝜕𝜕𝜀𝜀
�
𝑘𝑘−1

�−
𝑓𝑓𝑢𝑢′(−𝜀𝜀)
𝑓𝑓𝑢𝑢(−𝜀𝜀)�

𝑘𝑘+∞

𝑘𝑘=1

 

Proof: 

Let 𝑢𝑢� = Argmax
𝑢𝑢∈ℝ+

�𝑓𝑓𝑢𝑢(𝑢𝑢)𝑔𝑔𝑣𝑣(𝑢𝑢 + 𝜀𝜀)�. Then, for 𝑢𝑢 ≥ 0, we can write 

𝑓𝑓𝑢𝑢′(𝑢𝑢�) 𝑔𝑔𝑣𝑣(𝑢𝑢� + 𝜀𝜀) + 𝑔𝑔𝑣𝑣′ (𝑢𝑢� + 𝜀𝜀) 𝑓𝑓𝑢𝑢(𝑢𝑢�) = 0 

                                                            
2 For example, with exponentially distributed inefficiencies the conditional mode has a variance equal to the variance 
of the composite error, hence it is larger than the variance of the unconditional inefficiency. A similar argument holds 
with half normally distributed inefficiencies when 𝜎𝜎𝑢𝑢2 𝜎𝜎𝑣𝑣2⁄ = 𝜋𝜋 (4 − 𝜋𝜋⁄ ). 
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𝑓𝑓𝑢𝑢′(𝑢𝑢�) 𝑔𝑔𝑣𝑣(𝑢𝑢� + 𝜀𝜀) −
(𝑢𝑢� + 𝜀𝜀)
𝜎𝜎𝑣𝑣2

𝑔𝑔𝑣𝑣(𝑢𝑢� + 𝜀𝜀) 𝑓𝑓𝑢𝑢(𝑢𝑢�) = 0 

𝑢𝑢� = −𝜀𝜀 + 𝜎𝜎𝑣𝑣2
𝑓𝑓𝑢𝑢′(𝑢𝑢�)
𝑓𝑓𝑢𝑢(𝑢𝑢�)      (2)  

If �d
2 ln [𝑓𝑓𝑢𝑢(𝑢𝑢)]

d𝑢𝑢2
� < 𝜎𝜎𝑣𝑣−2, there is a unique solution of 𝑢𝑢�  in terms of bounded 𝜀𝜀 in (2) since 𝜎𝜎𝑣𝑣2

𝑓𝑓𝑢𝑢′(𝑢𝑢�)
𝑓𝑓𝑢𝑢(𝑢𝑢�) − 𝑢𝑢� = 𝜀𝜀 

becomes a monotonically decreasing function of 𝑢𝑢� ≥ 0. Then, �𝜎𝜎𝑣𝑣2
𝑓𝑓𝑢𝑢′(𝑢𝑢�)
𝑓𝑓𝑢𝑢(𝑢𝑢�)

� < 𝑀𝑀𝑢𝑢�  for a constant 𝑀𝑀 > 0, and 

the bilateral Laplace transform ℒ �𝜎𝜎𝑣𝑣2
𝑓𝑓𝑢𝑢′(𝑢𝑢�)
𝑓𝑓𝑢𝑢(𝑢𝑢�)

� (𝑠𝑠) exists, for some 𝑠𝑠 > 0. Using the Lagrange reversion theorem 

(see Whittaker and Watson (1927), pp. 132-133, and Grossman (2005)3), any differentiable function of 𝑢𝑢� , 

including 𝑢𝑢�  itself, is uniquely expressed in terms of the same function with −𝜀𝜀 as its argument and a power 

series of 𝜎𝜎𝑣𝑣2. This completes the proof. ∎ 

Note that the commonly used inefficiency densities of half normal, exponential, general truncated normal 

and gamma (with shape parameter ≥1) are log-concave distributions. When the noise 𝑣𝑣 and the inefficiency 

𝑢𝑢 are distributed as assumed in Theorem 1, for each of the density and distribution functions 𝑞𝑞 ∈

�𝑓𝑓𝑢𝑢�|𝑢𝑢, 𝐹𝐹�𝑢𝑢�|𝑢𝑢, 𝑓𝑓𝑢𝑢�|𝜀𝜀 , 𝐹𝐹�𝑢𝑢�|𝜀𝜀 , 𝑓𝑓𝑢𝑢|𝑢𝑢�, 𝐹𝐹�𝑢𝑢|𝑢𝑢�, 𝑓𝑓𝑢𝑢, 𝐹𝐹𝑢𝑢, 𝑓𝑓𝑢𝑢�, 𝐹𝐹�𝑢𝑢��, and any other differentiable function of 𝑢𝑢� ≥ 0, we have,  

𝑞𝑞(𝑢𝑢�) = 𝑞𝑞(−𝜀𝜀) −�
(𝜎𝜎𝑣𝑣2)𝑘𝑘

𝑘𝑘!
�
𝜕𝜕
𝜕𝜕𝜀𝜀
�
𝑘𝑘−1

��−
𝑓𝑓𝑢𝑢′(−𝜀𝜀)
𝑓𝑓𝑢𝑢(−𝜀𝜀)�

𝑘𝑘

𝑞𝑞′(−𝜀𝜀)�
+∞

𝑘𝑘=1

. 

In general, the conditional mode, theoretically and empirically, is less covered in the SAF literature when 

JLMS estimators are used, in favor of the conditional mean. To the best of authors’ knowledge, the article by 

Papadopoulos (2021) is an exception, in that the author elaborates on the conditional model and proves its 

monotonicity in terms of the composite error when the inefficiency follows a generalized exponential 

distribution.  Monotonicity of the conditional mode in terms of the composite error is important in that both 

(mean/mode) JLMS estimators must rank the unit inefficiencies identically. If so, using the conditional 

                                                            
3 Contrast to Grossman (2005) in which the proof is based on unilateral Laplace and the necessary condition 𝑓𝑓𝑢𝑢′(0) =
0, in our proof such condition 𝑓𝑓𝑢𝑢′(0) = 0 is not necessary as we use bilateral Laplace transform.  
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modes, the inefficiencies can be ranked based on their corresponding composite errors, i.e., there must be 

a -1 coefficient of ranked correlation between the two. A similar argument holds for conditional mean scores, 

as shown by Bera and Sharma (1999) and Ondrich and Ruggiero (2001). In Theorem 2, we show that under 

mild distributional assumptions, the monotonicity of the conditional mode in terms of the composite error 

is generalizable to any other inefficiency distribution.  

Theorem 2: Suppose 𝑣𝑣~𝑁𝑁(0,𝜎𝜎𝑣𝑣2). The inefficiency density 𝑓𝑓𝑢𝑢(𝑢𝑢) is nonzero, twice differentiable and log-

concave at 𝑢𝑢 ≥ 0. The inefficiency mode score conditioned on the composite error 𝜀𝜀 is a monotonically 

decreasing function of the composite error. 

Proof: 

Since 𝑓𝑓𝑢𝑢(𝑢𝑢) is log-concave, we have d
2 ln[𝑓𝑓𝑢𝑢(𝑢𝑢)]

(d𝑢𝑢)2
≤ 0 for all 𝑢𝑢 ≥ 0. As shown in Theorem 1, we can write 

equation (2) as 𝑢𝑢� = −𝜀𝜀 + 𝜎𝜎𝑣𝑣2
d ln[𝑓𝑓𝑢𝑢(𝑢𝑢�)]

d𝑢𝑢�
. Then, by the chain rule of derivatives, we have 

𝜕𝜕𝑢𝑢�
𝜕𝜕𝜀𝜀

= −1 + 𝜎𝜎𝑣𝑣2
d2 ln[𝑓𝑓𝑢𝑢(𝑢𝑢�)]

(d𝑢𝑢�)2
𝜕𝜕𝑢𝑢�
𝜕𝜕𝜀𝜀

 

𝜕𝜕𝑢𝑢�
𝜕𝜕𝜀𝜀

=
−1

1 − 𝜎𝜎𝑣𝑣2
d2 ln[𝑓𝑓𝑢𝑢(𝑢𝑢�)]

(d𝑢𝑢�)2
< 0 

The above negative derivative would imply strict monotonicity if negative scores were acceptable. Since they 

are restricted to be zero scores, monotonicity is not strict, in general. Thus, the proof is complete. ∎  

As mentioned in the Introduction section, Wang and Schmidt (2009) show that the conditional mean is a 

shrinkage estimator of the unit inefficiency in that it shrinks towards the mean of inefficiency rather than 

towards the unit inefficiency itself. This property is disadvantageous to the unit inefficiencies that depart 

from the mean inefficiency since it underestimates highly inefficient firms and overestimates the 

inefficiencies lower than the mean. It is also a disadvantage of the conditional mean for the regulators to 

accurately estimate the inefficiency in the lower and, especially, in the upper tail of the inefficiency 

distribution. Although being able to rank the units based on their inefficiencies is of regulators’ interest, in 
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some cases the magnitude of inefficiency is of crucial importance, for instance, the EU countries’ 

(in)efficiencies in their climate plans to cut the emissions of the greenhouse gases.  

In Theorem 3, we prove that the conditional mode has a similar property, in that it is a shrinkage estimator 

towards the inefficiency mode rather than towards the inefficiency itself. With such property, although the 

conditional mode would outperform the conditional mean in estimating the lower tail of an inefficiency 

distribution with its mode in a narrow positive neighborhood of zero, it is still a poor estimator for highly 

inefficient firms, i.e., the right tail of the distribution.  

Theorem 3: Suppose 𝑣𝑣~𝑁𝑁(0,𝜎𝜎𝑣𝑣2) and, the inefficiency density 𝑓𝑓𝑢𝑢(𝑢𝑢) is nonzero, twice differentiable, log-

concave for 𝑢𝑢 ≥ 0 and with 𝓂𝓂 = 𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀(𝑢𝑢) = Argmax
𝑢𝑢∈ℝ+

𝑓𝑓𝑢𝑢(𝑢𝑢). Let the inefficiency score be 𝑢𝑢� = 𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀(𝑢𝑢|𝜀𝜀). 

Then,  

a) as 𝜎𝜎𝑣𝑣2 → 0, 𝑢𝑢� →𝑝𝑝 𝑢𝑢,  

b) as 𝜎𝜎𝑣𝑣2 → 0, 𝑢𝑢� →𝑑𝑑 𝑢𝑢, 

c) as 𝜎𝜎𝑣𝑣2 → 0, 𝑢𝑢�−𝑢𝑢
𝜎𝜎𝑣𝑣

→𝑑𝑑 𝑁𝑁(0,1) 

d) as 𝜎𝜎𝑣𝑣2 → ∞, 𝑢𝑢� →𝑝𝑝 𝓂𝓂 = 𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀(𝑢𝑢). 

e) as 𝜎𝜎𝑣𝑣2 → ∞, 𝜎𝜎𝑣𝑣2�ln�𝑓𝑓𝑢𝑢(𝓂𝓂)��′ + �𝜎𝜎𝑣𝑣2�ln�𝑓𝑓𝑢𝑢(𝓂𝓂)��′′ − 1� (𝑢𝑢� −𝓂𝓂) →𝑑𝑑 (𝜀𝜀 + 𝓂𝓂). 

Proof: 

By assumption, 𝑓𝑓𝑢𝑢(𝑢𝑢) is differentiable and nonzero for 𝑢𝑢 ≥ 0. Then, d ln[𝑓𝑓𝑢𝑢(𝑢𝑢�)]
d𝑢𝑢�

  is bounded, as shown in 

Theorem 1. Since 𝑢𝑢� = Argmax
𝑢𝑢∈ℝ+

�𝑓𝑓𝑢𝑢(𝑢𝑢).𝑔𝑔𝑣𝑣(𝑢𝑢 + 𝜀𝜀)�, then for 𝑢𝑢� > 0,  

𝑓𝑓𝑢𝑢′(𝑢𝑢�) 𝑔𝑔𝑣𝑣(𝑢𝑢� + 𝜀𝜀) + 𝑓𝑓𝑢𝑢(𝑢𝑢�) 𝑔𝑔𝑣𝑣′ (𝑢𝑢� + 𝜀𝜀) = 0 

1
𝜎𝜎𝑣𝑣2

=
1

𝑢𝑢� + 𝜀𝜀
d ln[𝑓𝑓𝑢𝑢(𝑢𝑢�)]

d𝑢𝑢�
 

In addition, as 𝜎𝜎𝑣𝑣2 → 0, the normal density tends to Dirac’s delta function with its mass concentrated at the 

mean, i.e., 𝑔𝑔𝑣𝑣(𝑣𝑣) →𝑝𝑝  𝛿𝛿(𝐸𝐸(𝑣𝑣)). Then, 𝑣𝑣 →𝑝𝑝 𝐸𝐸(𝑣𝑣) = 0.  
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a) As 𝜎𝜎𝑣𝑣2 → 0, 𝑣𝑣 →𝑝𝑝 𝐸𝐸(𝑣𝑣) = 0. Then 𝜀𝜀 →𝑝𝑝 (−𝑢𝑢) . Additionally, as 𝜎𝜎𝑣𝑣2 → 0, 1
𝑢𝑢�+𝜀𝜀

d𝑙𝑙𝑙𝑙[𝑓𝑓𝑢𝑢(𝑢𝑢�)]
d𝑢𝑢�

→ ∞. Since d𝑙𝑙𝑙𝑙[𝑓𝑓𝑢𝑢(𝑢𝑢�)]
d𝑢𝑢�

 

is bounded, then 𝑢𝑢� + 𝜀𝜀𝑖𝑖 → 0, or 𝑢𝑢� → −𝜀𝜀𝑖𝑖. It means  𝑢𝑢� →𝑝𝑝 𝑢𝑢. 

b) Although the convergence in probability, as shown in point (a), automatically implies the convergence in 

distribution, another direct proof, independent from the result of point (a) above, can be as follows. 

𝜀𝜀 = 𝜎𝜎𝑣𝑣2
𝑓𝑓𝑢𝑢′(𝑢𝑢�)
𝑓𝑓𝑢𝑢(𝑢𝑢�) − 𝑢𝑢�  

Then,  

�
d𝜀𝜀
d𝑢𝑢�
� = �𝜎𝜎𝑣𝑣2

d2 ln[𝑓𝑓𝑢𝑢(𝑢𝑢�)]
(d𝑢𝑢�)2

− 1� 

𝑓𝑓𝑢𝑢�(𝑢𝑢�) = ℎ𝜀𝜀 �𝜀𝜀 = 𝜎𝜎𝑣𝑣2
𝑓𝑓𝑢𝑢′(𝑢𝑢�)
𝑓𝑓𝑢𝑢(𝑢𝑢�) − 𝑢𝑢�� �

d𝜀𝜀
d𝑢𝑢�
� 

= �𝜎𝜎𝑣𝑣2
d2 ln[𝑓𝑓𝑢𝑢(𝑢𝑢�)]

(d𝑢𝑢�)2
− 1� � 𝑓𝑓𝑢𝑢(𝑢𝑢) 𝑔𝑔𝑣𝑣 �𝑢𝑢 + 𝜎𝜎𝑣𝑣2

𝑓𝑓𝑢𝑢′(𝑢𝑢�)
𝑓𝑓𝑢𝑢(𝑢𝑢�) − 𝑢𝑢��𝑀𝑀𝑢𝑢

+∞

0

 

As 𝜎𝜎𝑣𝑣2 → 0, 

𝑓𝑓𝑢𝑢�(𝑢𝑢�) →𝑑𝑑 lim
𝜎𝜎𝑣𝑣2

ℎ𝜀𝜀 �𝜀𝜀 = 𝜎𝜎𝑣𝑣2
𝑓𝑓𝑢𝑢′(𝑢𝑢�)
𝑓𝑓𝑢𝑢(𝑢𝑢�) − 𝑢𝑢�� �

d𝜀𝜀
d𝑢𝑢�
� 

= lim
𝜎𝜎𝑣𝑣2

�𝜎𝜎𝑣𝑣2
d2 ln[𝑓𝑓𝑢𝑢(𝑢𝑢�)]

(d𝑢𝑢�)2
− 1� � 𝑓𝑓𝑢𝑢(𝑢𝑢) 𝑔𝑔𝑣𝑣 �𝑢𝑢 + 𝜎𝜎𝑣𝑣2

𝑓𝑓𝑢𝑢′(𝑢𝑢�)
𝑓𝑓𝑢𝑢(𝑢𝑢�) − 𝑢𝑢��𝑀𝑀𝑢𝑢

+∞

0

 

= � 𝑓𝑓𝑢𝑢(𝑢𝑢) 𝛿𝛿(𝑢𝑢 − 𝑢𝑢�)𝑀𝑀𝑢𝑢
+∞

0

 

= 𝑓𝑓𝑢𝑢(𝑢𝑢�) 

c) Since 𝑣𝑣~𝑁𝑁(0,𝜎𝜎𝑣𝑣2) , then − 𝑣𝑣
𝜎𝜎𝑣𝑣

~𝑁𝑁(0,1). It means  

−
𝑣𝑣
𝜎𝜎𝑣𝑣

= −
𝑢𝑢 + 𝜀𝜀
𝜎𝜎𝑣𝑣

=
𝑢𝑢� − 𝑢𝑢 − 𝜎𝜎𝑣𝑣2

𝑓𝑓𝑢𝑢′(𝑢𝑢�)
𝑓𝑓𝑢𝑢(𝑢𝑢�)

𝜎𝜎𝑣𝑣
~𝑁𝑁(0,1) 

As 𝜎𝜎𝑣𝑣2 → 0, 
𝑢𝑢�−𝑢𝑢−𝜎𝜎𝑣𝑣2

𝑓𝑓𝑢𝑢′ (𝑢𝑢�)
𝑓𝑓𝑢𝑢(𝑢𝑢�)

𝜎𝜎𝑣𝑣
→𝑝𝑝

𝑢𝑢�−𝑢𝑢
𝜎𝜎𝑣𝑣

 , then 𝑢𝑢�−𝑢𝑢
𝜎𝜎𝑣𝑣

→𝑑𝑑 𝑁𝑁(0,1). 

d) Since we have 1
𝜎𝜎𝑣𝑣2

= 1
𝑢𝑢�+𝜀𝜀

d ln[𝑓𝑓𝑢𝑢(𝑢𝑢�)]
d𝑢𝑢�

, for a finite value of 𝜀𝜀, as 𝜎𝜎𝑣𝑣2 → ∞, it implies two possibilities. First, if 

d ln[𝑓𝑓𝑢𝑢(𝑢𝑢�)]
d𝑢𝑢�

= 0, then 𝑢𝑢� = 𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀(𝑢𝑢) since 𝑓𝑓𝑢𝑢(𝑢𝑢) is unimodal (log-concave). Second, if d ln[𝑓𝑓𝑢𝑢(𝑢𝑢�)]
d𝑢𝑢�

≠ 0, then 
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d ln[𝑓𝑓𝑢𝑢(𝑢𝑢�)]
d𝑢𝑢�

< 0 and  𝑢𝑢� → −∞, which is restricted to 𝑢𝑢� = 0 (note: at 𝑢𝑢� → +∞, d ln[𝑓𝑓𝑢𝑢(𝑢𝑢�)]
d𝑢𝑢�

≯ 0). In such case, 𝑢𝑢�  

again is the mode of 𝑢𝑢 since 𝑓𝑓𝑢𝑢(𝑢𝑢) must be strictly monotonically decreasing. 

e)  From equation (2), we have 𝑢𝑢� = −𝜀𝜀 + 𝜎𝜎𝑣𝑣2
d ln[𝑓𝑓𝑢𝑢(𝑢𝑢�)]

d𝑢𝑢�
. As 𝜎𝜎𝑣𝑣2 → ∞,  we ca use the fact in point d and the 

mean value theorem around the mode 𝓂𝓂 to write lim
𝜎𝜎𝑣𝑣2→∞

𝑢𝑢� → lim
𝜎𝜎𝑣𝑣2→∞

− 𝜀𝜀 +𝜎𝜎𝑣𝑣2 �ln�𝑓𝑓𝑢𝑢(𝓂𝓂)��′−𝜎𝜎𝑣𝑣2 𝓂𝓂 �ln�𝑓𝑓𝑢𝑢(𝓂𝓂)��′′

 1−𝜎𝜎𝑣𝑣2 �ln�𝑓𝑓𝑢𝑢(𝓂𝓂)��′′
. This 

means, as 𝜎𝜎𝑣𝑣2 → ∞,  𝜎𝜎𝑣𝑣2�ln�𝑓𝑓𝑢𝑢(𝓂𝓂)��′ + �𝜎𝜎𝑣𝑣2�ln�𝑓𝑓𝑢𝑢(𝓂𝓂)��′′ − 1� (𝑢𝑢� −𝓂𝓂) →𝑑𝑑 (𝜀𝜀 + 𝓂𝓂). ∎ 

Note that in point e of Theorem 3, for half normal and general truncated normal densities, the first derivate 

evaluated at the mode �ln�𝑓𝑓𝑢𝑢(𝓂𝓂)��′ = 0, while for the exponential density, only the second derivate at the 

mode �ln�𝑓𝑓𝑢𝑢(𝓂𝓂)��′′ = 0. Theorem 3 indicates that the conditional model score of inefficiency is a measure 

of unconditional inefficiency only in the absence of a random shock (noise). In addition, when the random 

shock variance increases the conditional mode score decreases towards the mode of the inefficiency itself.  

A question might arise is, does a larger sample prevent the shrinkage of the JLMS estimators? In cross-

sectional context, the simple answer to this question in the literature is ‘no’, for several reasons. First, since 

the inefficiencies are unobservable, the conditional estimators cannot be improved by learning from more 

data in contrast to regression models. Second, the productivity of each unit is observed only once, therefore, 

due to the assumption of independence between the units, conditional estimator of each unit inefficiency is 

conditioned on a single composite error corresponding to the unit itself. Third, due to lack of replication, the 

JLMS estimator is based on a guess (a typical value, like the mean or the mode) from the conditional 

distribution of the inefficiency, conditioned on a single composite error. Therefore, inconsistency and high 

uncertainty of the JLMS estimators are expected in the cross-sectional context. In econometrics literature, it 

is known that regularization increases the accuracy of an estimator by reducing its variance. The accuracy of 

a regularized estimator is due to a trade-off between decreased variance and increased bias.  
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3. Regularization 

It has been shown in the literature that a maximum likelihood estimator is improved by maximizing an a 

posteriori or a penalized (regularized) likelihood function; see for example, Cox and O’Sullivan (1990) and 

Flynn et al. (2013). One can consider the conditional mode and the conditional mean from Bayes expected 

loss and the Bayes risk minimization perspective. For example, for the conditional mean, the loss function is 

(𝑢𝑢 − 𝑢𝑢�)2, whose risk minimization yields Argmin
𝑢𝑢�∈ℝ+

𝐸𝐸{(𝑢𝑢 − 𝑢𝑢�)2|𝜀𝜀} = 𝐸𝐸(𝑢𝑢|𝜀𝜀). For the conditional mode, a the 

loss function is a zero-one indicator function (𝐼𝐼(𝑢𝑢 ≠ 𝑢𝑢�) − 1), whose risk minimization yields  

Argmin
𝑢𝑢�∈ℝ+

𝐸𝐸{𝐼𝐼(𝑢𝑢 ≠ 𝑢𝑢�) − 1|𝜀𝜀} = Argmin
𝑢𝑢�∈ℝ+

[−𝑓𝑓𝑢𝑢|𝜀𝜀(𝑢𝑢�)] = Argmax
𝑢𝑢�∈ℝ+

𝑓𝑓𝑢𝑢|𝜀𝜀(𝑢𝑢�) = 𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀(𝑢𝑢|𝜀𝜀).  

A regularization of the risk minimization is achieved by adding extra information to, or imposing more 

constraints on, the risk function (expected loss). Suppose the constraints are a set of 𝑚𝑚 zero-equality 

equations of twice differentiable functions 𝑹𝑹(𝑢𝑢), i.e., 𝑹𝑹(𝑢𝑢) = 𝟎𝟎𝑚𝑚×1. The regularized conditional mean of the 

inefficiency is the solution to the following constrained objective function. 

min
𝑢𝑢�∈ℝ+

𝐸𝐸{(𝑢𝑢 − 𝑢𝑢�)2|𝜀𝜀} 

Subject to: 𝑹𝑹(𝑢𝑢�) = 𝟎𝟎 

The solution is Argmin
𝑢𝑢�∈ℝ+

𝐸𝐸{(𝑢𝑢 − 𝑢𝑢�)2|𝜀𝜀} + 𝝀𝝀′𝑹𝑹(𝑢𝑢�), where 𝝀𝝀 is the vector of Lagrange multipliers. The 

regularized conditional mean is the solution to the following system of equations. 

�𝑢𝑢� − 𝐸𝐸(𝑢𝑢|𝜀𝜀) + 0.5𝝀𝝀′∇𝑹𝑹(𝑢𝑢�) = 0
𝑹𝑹(𝑢𝑢�) = 𝟎𝟎  

 For the conditional mode of the inefficiency, the objective function and the constraints are as follows. 

max
𝑢𝑢�∈ℝ+

𝑓𝑓𝑢𝑢|𝜀𝜀(𝑢𝑢�) 

Subject to: 𝑹𝑹(𝑢𝑢�) = 𝟎𝟎 

The regularized conditional mode is the solution to the following system of equations. 

�
𝑓𝑓𝑢𝑢|𝜀𝜀
′ (𝑢𝑢�) + 𝝀𝝀′∇𝑹𝑹(𝑢𝑢�) = 0

𝑹𝑹(𝑢𝑢�) = 𝟎𝟎
 

The regularized JLMS estimators can be developed for both the mean and the mode. However, in the next 

section, we develop only the regularized conditional mode estimators for the three most commonly used 
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inefficiency densities, which are the half normal, exponential and general truncated normal. The conditional 

mode is explicitly the maximum likelihood estimator of the inefficiency for its joint density with the 

composite error, or for its density conditioned on the composite error.   

Restricted moments are common imposed constraints upon the likelihood functions (e.g., Hall and Presnell 

(1999)). The constraint can, for instance, be on the sum of the inefficiencies or the sum of squared 

inefficiencies. These are considered as constraints on the first and second moment of inefficiencies, 

respectively.  

3.1 First- and Second-Moment Constraints 

Inconsistency and high uncertainty of the JLMS estimators are expected in the cross-sectional context since 

any JLMS estimator of a unit inefficiency is conditioned on a single composite error corresponding to the unit 

itself. For each unit inefficiency estimation, we can also exploit extra information from other composite 

errors. For example, one can impose a restriction on all estimated inefficiencies such that their sample mean 

equals to the sample mean of the composite errors. Such a restriction is equivalent to a sample zero-mean 

constraint on the random shocks.  

In terms of economic theory, the zero-mean random shock constraint is interpreted as a condition where 

the unit’s productivity is invariant to the random shocks in the market.  Let us take a production frontier 

model such as the Cobb-Douglas or a translog model with inefficiency as the single source of shortfall. 

𝑦𝑦𝑖𝑖 = 𝑓𝑓(𝒙𝒙𝑖𝑖;𝜷𝜷) 𝑀𝑀−𝑢𝑢𝑖𝑖  

If firm 𝑖𝑖 experiences a random shock (𝑣𝑣𝑖𝑖), its production can expand or shrink, depending on the sign of 𝑣𝑣𝑖𝑖. 

𝑦𝑦𝑖𝑖 = 𝑓𝑓(𝒙𝒙𝑖𝑖;𝜷𝜷) 𝑀𝑀−𝑢𝑢𝑖𝑖  𝑀𝑀𝑣𝑣𝑖𝑖  

Random shocks for some units can cover part of their inefficiencies, while for others, they might worsen their 

productivities, depending on whether the random shocks and the firm specific inefficiencies are in the same 

or opposite directions. An assumption can be that if a firm were consecutively exposed to the shocks from 

the whole market, its productivity would eventually return to the same level. 

𝑦𝑦𝑖𝑖 = 𝑓𝑓(𝒙𝒙𝑖𝑖;𝜷𝜷). 𝑀𝑀−𝑢𝑢𝑖𝑖 = 𝑓𝑓(𝒙𝒙𝑖𝑖;𝜷𝜷). 𝑀𝑀−𝑢𝑢𝑖𝑖 . 𝑀𝑀𝑣𝑣1 … 𝑀𝑀𝑣𝑣𝑖𝑖 … 𝑀𝑀𝑣𝑣𝑛𝑛 = 𝑓𝑓(𝒙𝒙𝑖𝑖;𝜷𝜷). 𝑀𝑀−𝑢𝑢𝑖𝑖  
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Imposing the above-mentioned market (industry) shock-invariance assumption on the conditional mode of 

the inefficiency and the constraint that 𝜀𝜀𝑖𝑖 = 𝑣𝑣𝑖𝑖 − 𝑢𝑢𝑖𝑖, for 𝑖𝑖 = 1, … ,𝑛𝑛, with a sample of 𝑛𝑛 units, is translated 

into the inefficiency sum (mean) restriction. The regularized conditional mode is the solution of the following 

constrained objective function.  

max
𝑢𝑢1,…,𝑢𝑢𝑛𝑛

�� ln[𝑔𝑔𝑣𝑣(𝑢𝑢𝑖𝑖 + 𝜀𝜀𝑖𝑖)] + ln[𝑓𝑓𝑢𝑢(𝑢𝑢𝑖𝑖)]
𝑛𝑛

𝑖𝑖=1

� 

subject to:  

�(𝑢𝑢𝑖𝑖 + 𝜀𝜀𝑖𝑖)
𝑛𝑛

𝑖𝑖=1

= 0 

Using the Lagrange multiplier method, the above constrained objective function is written as 

𝑚𝑚0(𝑢𝑢1, … ,𝑢𝑢𝑛𝑛|𝜀𝜀1, … , 𝜀𝜀𝑛𝑛) = Argmax
𝑢𝑢1,…,𝑢𝑢𝑛𝑛

�� ln[𝑔𝑔𝑣𝑣(𝑢𝑢𝑖𝑖 + 𝜀𝜀𝑖𝑖)] + ln[𝑓𝑓𝑢𝑢(𝑢𝑢𝑖𝑖)]
𝑛𝑛

𝑖𝑖=1

+ 𝜆𝜆�(𝑢𝑢𝑖𝑖 + 𝜀𝜀𝑖𝑖)
𝑛𝑛

𝑖𝑖=1

� 

Then, the estimated inefficiencies are forced to fulfill the constraint ∑ 𝑣𝑣𝑖𝑖𝑛𝑛
𝑖𝑖=1 = 0. We can extend the number 

of restrictions, for example, by adding a restriction on the variance or the sum of squares of the estimated 

conditional modes, as follows. 

max
𝑢𝑢1,…,𝑢𝑢𝑛𝑛

�� ln[𝑔𝑔𝑣𝑣(𝑢𝑢𝑖𝑖 + 𝜀𝜀𝑖𝑖)] + ln[𝑓𝑓𝑢𝑢(𝑢𝑢𝑖𝑖)]
𝑛𝑛

𝑖𝑖=1

� 

  Subject to: 

�(𝑢𝑢𝑖𝑖 + 𝜀𝜀𝑖𝑖)
𝑛𝑛

𝑖𝑖=1

= 0 

�𝑢𝑢𝑖𝑖2
𝑛𝑛

𝑖𝑖=1

= 𝑐𝑐 

The 𝑐𝑐 on the right side of the second constraint can be, for example, 𝑐𝑐 = 𝑛𝑛𝐸𝐸(𝑢𝑢2). With the Lagrange 

multiplier method, the above constrained objective function is written as 

𝑚𝑚0(𝑢𝑢1, … ,𝑢𝑢𝑛𝑛|𝜀𝜀1, … , 𝜀𝜀𝑛𝑛) = Argmax
𝑢𝑢1,…,𝑢𝑢𝑛𝑛

�� ln[𝑔𝑔𝑣𝑣(𝑢𝑢𝑖𝑖 + 𝜀𝜀𝑖𝑖)] + ln[𝑓𝑓𝑢𝑢(𝑢𝑢𝑖𝑖)]
𝑛𝑛

𝑖𝑖=1

+ 𝜆𝜆�(𝑢𝑢𝑖𝑖 + 𝜀𝜀𝑖𝑖)
𝑛𝑛

𝑖𝑖=1

+ 𝜃𝜃 ��𝑢𝑢𝑖𝑖2
𝑛𝑛

𝑖𝑖=1

− 𝑐𝑐��. 
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Table 1: The unit inefficiency estimator 𝑢𝑢� = max {0,−𝑢𝑢�}, with 𝑢𝑢�  given in the cells of the following table. 

Measure  
Half Normal, 

 𝒖𝒖𝒊𝒊~𝑵𝑵+(𝟎𝟎,𝝈𝝈𝒖𝒖𝟐𝟐) 
Truncated Normal, 

 𝒖𝒖𝒊𝒊~𝑵𝑵+(𝝁𝝁,𝝈𝝈𝒖𝒖𝟐𝟐) 
Exponential, 

 𝒖𝒖𝒊𝒊~𝑬𝑬𝒙𝒙𝑬𝑬(�𝝈𝝈𝒖𝒖𝟐𝟐) 

Unregularized Mode(𝑢𝑢|𝜀𝜀𝑖𝑖) 
𝜎𝜎𝑢𝑢2𝜀𝜀

𝜎𝜎𝑣𝑣2 + 𝜎𝜎𝑢𝑢2
 

𝜎𝜎𝑢𝑢2𝜀𝜀 − 𝜇𝜇𝜎𝜎𝑣𝑣2

𝜎𝜎𝑣𝑣2 + 𝜎𝜎𝑢𝑢2
 𝜀𝜀 +

𝜎𝜎𝑣𝑣2

�𝜎𝜎𝑢𝑢2
 

Mode(𝑢𝑢|𝜀𝜀𝑖𝑖) with 

1st Moment Constraint 

𝜎𝜎𝑢𝑢2𝜀𝜀 + 𝜎𝜎𝑣𝑣2𝜀𝜀̅
𝜎𝜎𝑣𝑣2 + 𝜎𝜎𝑢𝑢2

 
𝜎𝜎𝑢𝑢2𝜀𝜀 + 𝜎𝜎𝑣𝑣2𝜀𝜀̅
𝜎𝜎𝑣𝑣2 + 𝜎𝜎𝑢𝑢2

 𝜀𝜀 

Mode(𝑢𝑢|𝜀𝜀𝑖𝑖) with 

1st & 2nd Moment 

Constraints 

𝜀𝜀 + 𝜀𝜀̅ �� 𝜎𝜎�𝜀𝜀2
𝜎𝜎𝑢𝑢2 − 𝜀𝜀2̅  − 1�

� 𝜎𝜎�𝜀𝜀2
𝜎𝜎𝑢𝑢2 − 𝜀𝜀̅2

 
𝜀𝜀𝑖𝑖 + 𝜀𝜀̅ �� 𝜎𝜎�𝜀𝜀2

𝐸𝐸(𝑢𝑢2) − 𝜀𝜀2̅  − 1�

� 𝜎𝜎�𝜀𝜀2
𝐸𝐸(𝑢𝑢2) − 𝜀𝜀2̅

 

𝜀𝜀 + 𝜀𝜀̅ �� 𝜎𝜎�𝜀𝜀2
2𝜎𝜎𝑢𝑢2 − 𝜀𝜀2̅  − 1�

� 𝜎𝜎�𝜀𝜀2
2𝜎𝜎𝑢𝑢2 − 𝜀𝜀2̅

 

 

Table 1 shows the regularized conditional mode estimators of the unit inefficiency in a production model 

when inefficiencies follow the three most commonly used inefficiency densities: half normal, truncated 

normal and exponential densities. Note that; 𝜀𝜀̅ = ∑ 𝜀𝜀𝑖𝑖𝑛𝑛
𝑖𝑖=1
𝑛𝑛

 and 𝜎𝜎�𝜀𝜀2 = ∑ (𝜀𝜀𝑖𝑖−𝜀𝜀�)2𝑛𝑛
𝑖𝑖=0

𝑛𝑛
, and for 𝑢𝑢𝑖𝑖~𝑁𝑁+(𝜇𝜇,𝜎𝜎𝑢𝑢2), 

𝐸𝐸(𝑢𝑢2) = 𝜎𝜎𝑢𝑢2

⎝

⎜
⎛

1 +
𝜇𝜇

�𝜎𝜎𝑢𝑢2

𝜙𝜙 � 𝜇𝜇
�𝜎𝜎𝑢𝑢2

�

Φ� 𝜇𝜇
�𝜎𝜎𝑢𝑢2

�
+
𝜇𝜇2

𝜎𝜎𝑢𝑢2

⎠

⎟
⎞

. 

For half-normal and exponential distributions, 𝐸𝐸(𝑢𝑢2) is 𝜎𝜎𝑢𝑢2 and 2𝜎𝜎𝑢𝑢2, respectively. Thus, with the first- and 

second-moment constraints, 𝑢𝑢�  has the same closed-form solution in terms of 𝐸𝐸(𝑢𝑢2). The conditional mean 

𝐸𝐸(𝑢𝑢|𝜀𝜀𝑖𝑖) with each of the densities shown in Table 1, has the following general form: 

𝐸𝐸(𝑢𝑢|𝜀𝜀𝑖𝑖) = 𝜎𝜎�
𝜙𝜙 �𝜇𝜇�𝜎𝜎��

Φ �𝜇𝜇�𝜎𝜎��
− 𝜇𝜇� 

where 𝜇𝜇� is the negative of the cells of the 1st row corresponding to the unregularized mode (−𝑢𝑢�) in Table 1, 

and 𝜎𝜎� = 𝜎𝜎𝑣𝑣  for the exponential density and 𝜎𝜎� = 𝜎𝜎𝑣𝑣𝜎𝜎𝑢𝑢
𝜎𝜎

 for each of the half-normal and truncated normal 

densities, where 𝜎𝜎2 = 𝜎𝜎𝑣𝑣2 + 𝜎𝜎𝑢𝑢2. 

As stated in Theorem 3, the conditional mode of inefficiency shrinks towards the mode of inefficiency in 

response to any noise variance inflation. From Table 1, we realize that the regularized estimators (explicitly 
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with the first-moment restriction) serve to hold the unit inefficiency estimators away from the inefficiency 

mode by adding fractions of the noise variance to the conditional mode estimators, i.e., they serve to reduce 

the shrinkage of the conditional mode estimator towards the mode of inefficiency (0 or 𝜇𝜇 > 0).  

For each of the above inefficiency densities and the set of the constraints, the same estimators are developed 

for a cost function. To save space, they are not presented here, but they are obtained straightforwardly by 

altering the signs of 𝜀𝜀 and 𝜀𝜀 ̅ inside the above closed-form formulae in Table 1. The purpose of presenting 

regularized conditional mode estimators is to introduce the methodology with closed-form mathematical 

expressions. Analogous to the conditional mode, the methodology can also be applied to regularized 

conditional mean estimators, with properly selected constraints4.  

4. Simulations 

An extensive simulation study is conducted to assess the performance of the proposed methodology relative 

to the classical methods of the conditional mean/mode of inefficiency. The varying factors of the simulation 

study are (i) the sample size, (ii) the inefficiency distribution, (iii) the noise variance, (iv) the inefficiency 

variance and (iv) the location parameter, only when the inefficiency follows a truncated normal distribution.   

Samples of sizes 20, 30, 50, 100 and 250 were simulated. A Cobb-Douglas production model was assumed, 

and each sample consisted of three simulated variables: production output and labor and capital inputs. The 

values for the intercept, elasticities, and means and variances of labor and capital were selected to imitate a 

production model originally used in the Cobb-Douglas (1928) article. Specifically, the regression coefficients 

were selected as 𝜷𝜷 = {−0.25, 0.25, 075} and labor and capital were drawn from the bivariate normal 

distribution 𝒙𝒙~ 𝑁𝑁2 �[5.5, 5], �0.25 0
0 0.04��.  

                                                            
4 For instance, a quadratic interpolated polynomial through the points 0, maximum deterministic inefficiency (the 
negative of the minimum composite error in a production function) and the estimated mean of inefficiency density. 
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Random shocks from the distribution 𝑁𝑁(0,𝜎𝜎𝑣𝑣2) and inefficiencies from distributions 𝑁𝑁+(0,𝜎𝜎𝑢𝑢2), 𝑁𝑁+(𝜇𝜇,𝜎𝜎𝑢𝑢2) 

and 𝐸𝐸𝐸𝐸𝐸𝐸(�𝜎𝜎𝑢𝑢2) were simulated and used to simulate model (1). The noise variance was given values of 𝜎𝜎𝑣𝑣2 =

0.1,  0.5, and 0.9, and the inefficiency variance 𝜎𝜎𝑢𝑢2 was selected such that 𝑉𝑉𝑉𝑉𝑉𝑉(𝑢𝑢) = 1 − 𝜎𝜎𝑣𝑣2, i.e., the variance 

of the composite error was kept at unity with each simulated sample (𝑉𝑉𝑉𝑉𝑉𝑉(𝜀𝜀) = 1). For the truncated normal 

inefficiency, the variance is also affected by the location parameter 𝜇𝜇. In the simulations, 𝜇𝜇 = 0 (for half 

normal) and 𝜇𝜇 = 0.1, and 0.2 (for truncated normal).   

The simulations were implemented as follows. For each sample size, the simulated design matrix was fixed 

across all simulations. To assess the performance of each estimator across different ranks of inefficiency, we 

considered two different scenarios. The first scenario is to rank the firms constantly based on their 

inefficiencies such that the first simulated firm always receives the lowest simulated inefficiency, and the last 

simulated firm always receives the largest inefficiency. The second scenario is to randomly rank the firms 

based on their inefficiencies. The results of the two scenarios were consistent; hence, the second scenario 

was followed to avoid any potential effect due to differences in production input across the firms. This 

process was repeated 100 times, i.e., 100 samples of ranked inefficiencies were simulated from the above-

mentioned inefficiency probability distributions. For each of the 100 samples of inefficiencies, 100 samples 

of noise terms were randomly generated from the above-mentioned normal distributions. This resulted in 

10000 replications for each of the 60 combinations of the above factors (sample size, probability distribution, 

𝜎𝜎𝑣𝑣2, 𝜎𝜎𝑢𝑢2 and 𝜇𝜇).        

With each replication of the simulation process, the four measures of unit-level inefficiencies were 

calculated, which were the conditional mean, conditional mode, conditional mode with first-moment 

constraint and conditional mode with first- and second-moment constraint. The Mean Squared Error (MSE) 

for the 𝑖𝑖th firm’s inefficiency was calculated as follows. 

𝑀𝑀𝑀𝑀𝐸𝐸(𝑢𝑢�𝑖𝑖) =
∑ ∑ �𝑢𝑢�𝑗𝑗𝑖𝑖 − 𝑢𝑢𝑘𝑘𝑖𝑖�

2100
𝑗𝑗=1

100
𝑘𝑘=1

10000
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The squared bias for the 𝑖𝑖th firm’s inefficiency measure was calculated as follows. 

𝐵𝐵𝑖𝑖𝐵𝐵𝐵𝐵2(𝑢𝑢�𝑖𝑖) =
∑ �

∑ 𝑢𝑢�𝑗𝑗𝑖𝑖100
𝑗𝑗=1
100 − 𝑢𝑢𝑘𝑘𝑖𝑖�

2
100
𝑘𝑘=1

100
 

Each measure’s relative efficiency to the conditional mean efficiency was calculated as 

𝑅𝑅𝑅𝑅𝑅𝑅𝐵𝐵𝑅𝑅𝑖𝑖𝑅𝑅𝑅𝑅 𝑀𝑀𝑀𝑀𝑀𝑀(𝑢𝑢�𝑖𝑖) =
𝑀𝑀𝑀𝑀𝑀𝑀�𝑀𝑀(𝑢𝑢|𝜀𝜀𝑖𝑖)�
𝑀𝑀𝑀𝑀𝑀𝑀(𝑢𝑢�𝑖𝑖)

. 

In the above formulae, 𝑖𝑖 represents the unit, 𝑗𝑗 is the noise replication and 𝑘𝑘 represents inefficiency 

replications. Some results of the relative MSE are shown in Figure 1, Figure 2 and Figure 3. The rest is 

presented in the Supplementary Materials appendix. In the graphs, the x-axis represents the rank of the 

inefficiency5 and the y-axis represents the relative MSE and the bias squared. All the simulations and 

calculations were run in STATA/SE 16 for Windows 64 bit using the sfcross command by Belotti et al. (2013).   

The results of the simulations in Figures 1-3 show that when estimating large inefficiencies, the regularized 

conditional mode estimator, especially with the first-moment constraint, outperforms the unregularized 

conditional mean and mode estimators as the signal-to-noise ratio (𝜎𝜎𝑢𝑢 𝜎𝜎𝑣𝑣⁄ ) increases. This is an important 

finding since government agencies responsible for regulating local monopoly markets want to estimate the 

inefficiency score of the most inefficient firms with as high accuracy as possible. While the signal-to-noise 

ratio seems to be more decisive for the relative performance of the regularized estimator than the sample 

size and distributional assumption, its performance improves further when inefficiencies are exponentially 

distributed and when the sample size is not very large.  Some points can be listed as follows: 

• The unregularized conditional mode is almost always the most accurate estimator for units with no or 

small inefficiencies— a result that is expected due to its shrinkage-towards-mode property. 6 

                                                            
5 An alternative is to use the actual scores of inefficiencies or the technical efficiencies. However, the conclusion from 
the graphs would be the same and only on different scales.  
6 The modes are zero (for half-normal and exponential distributions) and 0.1 for truncated normal distributions.   
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• The unregularized conditional mean is the most accurate estimator of the unit inefficiency for middle 

ranks since it is a shrinkage estimator towards the mean.  

• Regularized conditional mode estimators, especially the one with the first-moment constraint, are the 

most accurate estimators of unit inefficiencies that are more to the right tail of the distribution (highly 

ranked), unless it is a case with low signal-to-noise ratio, in which the unconditional mode (for lower 

ranks) and unconditional mean (for higher ranks) outperform the regularized estimators.  

• A summary of the above 3 points is that the analysts should make an effort to learn the characterizing 

conditions of the application at hand since the preferred estimation approach changes as the signal-to-

noise ratio changes and depends on how and where the inefficiencies are distributed. Therefore, 

depending on the signal-to-noise ratio and the rank of the inefficiency (simply based on the estimated 

composite errors), the optimal estimator can be a mixture (or weighted sum) of the conditional mode (for 

lower inefficiency ranks), conditional mean (for middle inefficiency ranks) and regularized conditional 

mode, especially the one subject to the first-moment constraint (for high inefficiency ranks).   
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𝜎𝜎𝑣𝑣2 = 0.1,      𝑉𝑉𝐵𝐵𝑉𝑉(𝑢𝑢) = 0.9  𝜎𝜎𝑣𝑣2 = 0.5,      𝑉𝑉𝐵𝐵𝑉𝑉(𝑢𝑢) = 0.5  𝜎𝜎𝑣𝑣2 = 0.9,      𝑉𝑉𝐵𝐵𝑉𝑉(𝑢𝑢) = 0.1  
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Figure 1: Normal—Half-Normal Model: Relative Inefficiency (MSE Ratio) compared to 𝑀𝑀(𝑢𝑢|𝜀𝜀) 

- - - -   Conditional mean 𝑀𝑀(𝑢𝑢|𝜀𝜀), reference   - - - -  Conditional 𝑀𝑀𝑀𝑀𝑀𝑀𝑅𝑅(𝑢𝑢|𝜀𝜀) 
          𝑀𝑀𝑀𝑀𝑀𝑀𝑅𝑅(𝑢𝑢|𝜀𝜀), restricted with ∑𝑢𝑢              𝑀𝑀𝑀𝑀𝑀𝑀𝑅𝑅(𝑢𝑢|𝜀𝜀), regularized with ∑𝑢𝑢 & ∑𝑢𝑢2 
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Note: The larger the noise variance, the choppier the curve of the unregularized conditional mode is. 
 
 

𝜎𝜎𝑣𝑣2 = 0.1,      𝜎𝜎𝑢𝑢2 = 0.9  𝜎𝜎𝑣𝑣2 = 0.5,      𝜎𝜎𝑢𝑢2 = 0.5  𝜎𝜎𝑣𝑣2 = 0.9,      𝜎𝜎𝑢𝑢2 = 0.1  
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Figure 2: Normal—Exponential Model: Relative Inefficiency (MSE Ratio) compared to 𝑀𝑀(𝑢𝑢|𝜀𝜀) 

- - - -   Conditional mean 𝑀𝑀(𝑢𝑢|𝜀𝜀), reference   - - - -  Conditional 𝑀𝑀𝑀𝑀𝑀𝑀𝑅𝑅(𝑢𝑢|𝜀𝜀) 
          𝑀𝑀𝑀𝑀𝑀𝑀𝑅𝑅(𝑢𝑢|𝜀𝜀), restricted with ∑𝑢𝑢              𝑀𝑀𝑀𝑀𝑀𝑀𝑅𝑅(𝑢𝑢|𝜀𝜀), restricted with ∑𝑢𝑢 & ∑𝑢𝑢2 
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Note: The larger the noise variance, the choppier the curves of the regularized conditional mode estimators are.   
 

𝜎𝜎𝑣𝑣2 = 0.1,      𝑉𝑉𝐵𝐵𝑉𝑉(𝑢𝑢) = 0.9  𝜎𝜎𝑣𝑣2 = 0.5,      𝑉𝑉𝐵𝐵𝑉𝑉(𝑢𝑢) = 0.5  𝜎𝜎𝑣𝑣2 = 0.9,      𝑉𝑉𝐵𝐵𝑉𝑉(𝑢𝑢) = 0.1  
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Figure 3: Normal—Truncated Normal Model (with 𝜇𝜇 = 0.1): Relative Inefficiency (MSE Ratio) 
compared to 𝑀𝑀(𝑢𝑢|𝜀𝜀) 

- - - -   Conditional mean 𝑀𝑀(𝑢𝑢|𝜀𝜀), reference   - - - -  Conditional 𝑀𝑀𝑀𝑀𝑀𝑀𝑅𝑅(𝑢𝑢|𝜀𝜀) 
          𝑀𝑀𝑀𝑀𝑀𝑀𝑅𝑅(𝑢𝑢|𝜀𝜀), constrained with ∑𝑢𝑢              𝑀𝑀𝑀𝑀𝑀𝑀𝑅𝑅(𝑢𝑢|𝜀𝜀), constrained with ∑𝑢𝑢 & ∑𝑢𝑢2 
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5. Application 

We consider the Swedish electricity distribution market that consisted of 154 local monopolies with 

complete data in 2013. The regulator wants to know the extent to which each firm can improve relative to 

the efficient frontier. For that purpose, we specify and estimate a variable cost (𝑐𝑐) function where the 

number of customers/connection points (𝐵𝐵) is the relevant output variable and the price of labor (𝑅𝑅) and 

electricity (𝑅𝑅) are the corresponding input prices. This production process is similar to what has been used in 

the past in this field; see e.g., Söderberg (2008), p. 65-66, for an extensive literature review. The price of 

electricity is included because firms purchase electricity to cover network losses and pay for transit on the 

high voltage network. The electricity price is calculated as the total costs of transit and the losses divided by 

the sum of the losses and high voltage deliveries.  

Since the estimation of the unit inefficiency is a post-estimation procedure in SFA, entering the discussion of 

the selection between different productivity models, for instance between Cobb-Douglas and translog, might 

divert our attention away from the purpose of our proposed regularized estimators. Therefore, to save space, 

we only assume a Cobb-Douglas production model, and specify the variable cost function as 𝑐𝑐𝑖𝑖 = 𝛼𝛼𝐵𝐵𝑖𝑖
𝛽𝛽𝑅𝑅𝑖𝑖

𝛾𝛾𝑅𝑅𝑖𝑖𝛿𝛿, 

where 𝑖𝑖 denotes the firm. The homogeneity restriction can be imposed by normalizing 𝑐𝑐𝑖𝑖 and 𝑅𝑅𝑖𝑖 by 𝑅𝑅𝑖𝑖, which 

after natural logarithm transform allows us to write the model as: 

𝑅𝑅𝑛𝑛 �
𝑐𝑐𝑖𝑖
𝑅𝑅𝑖𝑖
� = 𝛽𝛽0 + 𝛽𝛽1 ln (𝐵𝐵𝑖𝑖) + 𝛽𝛽2 𝑅𝑅𝑛𝑛 �

𝑅𝑅𝑖𝑖  
𝑅𝑅𝑖𝑖
�. 

This expression has normal Cobb-Douglas properties, e.g., 𝛽𝛽1 reveals the nature of the scale of production. 

Specifically, if 𝛽𝛽1 < 1, then there are economies of scale; if 𝛽𝛽1 = 1, then there is constant returns to scale; 

and if 𝛽𝛽1 > 1, there are diseconomies of scale.  It is straightforward to extend this Cobb-Douglas model to a 

stochastic frontier setting with inefficiency (𝑢𝑢) and idiosyncratic error (𝜈𝜈) terms (Coelli et al., 2005): 

𝑅𝑅𝑛𝑛 �𝑐𝑐𝑖𝑖
𝑒𝑒𝑖𝑖
� = 𝛽𝛽0 + 𝛽𝛽1 ln (𝐵𝐵𝑖𝑖) + 𝛽𝛽2 𝑅𝑅𝑛𝑛 �𝑙𝑙𝑖𝑖 

𝑒𝑒𝑖𝑖
� + 𝜈𝜈𝑖𝑖 + 𝑢𝑢𝑖𝑖. 
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Data on variable costs (Opex), the number of customers, and the price of electricity are collected from the 

Swedish energy regulator (the Energy Markets Inspectorate). The price of labor, which measures the average 

regional salary for employees in the public sector, is collected from Statistics Sweden. Data are cross-

sectional from the year 2013. Because the objective function, or type of customers, can be different for 

different ownership forms, as shown by Meade and Söderberg (2020), we argue that the regulator has to 

restrict the benchmark to the firms that have the same type of owners. For Swedish electricity distribution, 

therefore, we need three different benchmark samples: (i) municipality owned firms (n=99), (ii) cooperatively 

owned firms (n=32), and (iii) firms owned by private investors (n=23). Some descriptive statistics of the data 

are presented in Table A1 in the Appendix.  

Table 2: Model Estimates 
Estimate (S.E.) Half Normal Exponential Truncated Normal 

M
un

ic
ip

al
ity

 O
w

ne
d,

  
𝒏𝒏

=
𝟗𝟗𝟗𝟗

 

𝛽𝛽0 -8.510 (0.3309) -8.4294 (0.329) -8.5354 (0.4585) 
𝛽𝛽1 .8087 (0.0255) 0.8075 (0.0259) .8090 (0.0257) 
𝛽𝛽2 1.1079 (0.0325) 1.1078 (0.0328) 1.1079 (0.0325) 
𝜎𝜎𝑢𝑢2 .0529 (0.0301) .013 (0.0104) .0459 (0.0669) 
𝜎𝜎𝑣𝑣2 .0222 (0.0097) .0287 (0.0090) .0204 (0.0243) 
𝜇𝜇 - - .0827 (0.8431) 

𝐻𝐻0:𝑁𝑁𝑁𝑁 𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖 LR test, �̅�𝜒2 (p-value): 
1.58 (0.104) 

LR test, �̅�𝜒2 (p-value):  
1.24 (0.133) 

Z test, z (p-value):  
1.24 (0.108) 

Co
op

er
at

iv
el

y 
O

w
ne

d,
  

𝒏𝒏
=
𝟑𝟑𝟑𝟑

 

𝛽𝛽0 -9.122 (0.3741) -9.0215 (0.3026) -9.0329 (0.3117) 

𝛽𝛽1 .8854 (0.0279) .8912 (0.0275) .8903 (0.0278) 
𝛽𝛽2 1.1198 (0.0336) 1.1101 (0.0276) 1.1113 (0.0286) 
𝜎𝜎𝑢𝑢2 .0925 (0.0393) .0358 (0.018) .5632 (2.3897) 
𝜎𝜎𝑣𝑣2 .0064 (0.0090) .0087 (0.005) .0083 (0.0051) 
𝜇𝜇 - - -2.5088 (12.5981) 

𝐻𝐻0:𝑁𝑁𝑁𝑁 𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖 LR test, �̅�𝜒2 (p-value): 
5.67 (0.009) 

LR test, �̅�𝜒2 (p-value):  
6.47 (0.005) 

Z test, z (p-value):  
2.321 (0.010) 

Pr
iv

at
e 

In
ve

st
or

s,
  

𝒏𝒏
=
𝟑𝟑𝟑𝟑

 

𝛽𝛽0 -8.0991 (1.2217) -7.9061 (0.6246) -7.919 (0.6574) 
𝛽𝛽1 .9424 (0.0435) .9441 (0.028) .9442 (0.0283) 
𝛽𝛽2 .9589 (0.1033) .9513 (0.0679) .9514 (0.0685) 
𝜎𝜎𝑢𝑢2 .0201 (0.1272) .0367 (0.0357) .8233 (11.2301) 
𝜎𝜎𝑣𝑣2 .1549 (0.4719) .0388 (0.023) .0375 (0.029) 
𝜇𝜇 - - -3.6906 (58.5673) 

𝐻𝐻0:𝑁𝑁𝑁𝑁 𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖 LR test, �̅�𝜒2 (p-value):  
1.22 (0.134) 

LR test, �̅�𝜒2 (p-value): 
1.24 (0.132) 

Z test, z (p-value): 
1.163 (0.122) 

 
 



        27  (of 31) 

In Figure 4, we see that the regularized estimators suggest that the highly inefficient firms have less technical 

efficiency (or equivalently larger inefficiency scores) compared to what the unregularized estimators 

estimate. Any inference regarding unit inefficiency can be poor when only a single sample is available, as it 

is in a cross-sectional context. However, we know that the conditional mean and the conditional mode 

(Theorem 3) are shrinking estimators, i.e., they underestimate larger inefficiencies. 

Therefore, our regularized estimators behave better in that sense, i.e., they estimated larger inefficiencies 

further from the mean/mode compared to the unregularized estimators. In addition, they have desired 

properties in the sense that they follow the theoretical first and second moments of inefficiency, i.e., their 

sample mean and variance are close to the estimated industry mean and variance.  

 

Figure 4: Relative technical efficiency based on restricted and unrestricted conditional mode estimates, 
compared to technical efficiency based on unrestricted 𝐸𝐸(𝑢𝑢|𝜀𝜀) estimtes.  
- - - - -  Conditional mean 𝐸𝐸(𝑢𝑢|𝜀𝜀), reference   - - - - -   Conditional 𝑀𝑀𝑁𝑁𝑀𝑀𝑖𝑖(𝑢𝑢|𝜀𝜀) 
______ 𝑀𝑀𝑁𝑁𝑀𝑀𝑖𝑖(𝑢𝑢|𝜀𝜀), restricted with ∑𝑢𝑢     ______ 𝑀𝑀𝑁𝑁𝑀𝑀𝑖𝑖(𝑢𝑢|𝜀𝜀), restricted with ∑𝑢𝑢 & ∑𝑢𝑢2 

Half-Normal    Exponential   Truncated Normal 
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The inference with a single sample is challenging. We checked the relative performance of each estimator by 

running a simulation with the same sampled data (number of customers and prices) but with the costs 

generated from the estimated parameters (𝜎𝜎�𝑣𝑣2, 𝜎𝜎�𝑢𝑢2, �̂�𝜇 and 𝜷𝜷�) in Table 2. The simulation procedure was the 

same as that explained in the simulation section (Figure A1 in the Appendix).  

6. Conclusions 

The conditional mean/mode estimator of unit inefficiency is a shrinkage estimator towards the inefficiency 

mode (mean), depending on the noise variance (or signal-to-noise ratio). It is mostly different from the firm’s 

inefficiency itself unless there is no noise in the productivity model. The proposed regularized conditional 

mode estimators outperform the classical conditional mode/mean estimators, especially for highly 

inefficient units.  

The constraints used in this paper were imposed on the first and the second moments of the inefficiencies 

when estimating the conditional mode of inefficiency. The idea can be further generalized to other sorts of 

constraints, distributions other than those used in this paper, or constraints on the conditional mean. In this 

article, the methodology is discussed in a cross-sectional context. However, it can be directly applied to a 

panel data context wherever the conditional mode/mean of the unit inefficiency is estimated. According to 

Tsionas (2017), one issue that continues to plague SFA is the endogeneity of the inputs. Our methodology is 

also directly applicable to the SFA methods dealing with the endogeneity. It can be applied to the 

endogeneity situation discussed by Amsler et al. (2016) and the semiparametric estimation method in Fan et 

al. (1996). And most importantly, the proposed regularized estimators are beneficial to regulators for 

accurately estimating high unit inefficiencies since the benchmark methods systematically underestimate 

the inefficiency of less efficient units.  
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Appendix 

Table A1. Descriptive statistics of the data used in the Application section 
Variable Mean S.D. Min Max 
     
Panel A: municipality owned (n=99)     
Variable cost (𝑖𝑖) 57 593 75 404 7 207 612 999 
Number of customers (𝑠𝑠) 22 160 31 480 2 303 256 549 
Price of electricity (𝑖𝑖) 0.3673 0.3379 0.0390 1.9990 
Price of labor (𝑙𝑙) 21 746 356 21 250 23 160 
     
Panel B: cooperatively owned (n=32)     
Variable cost (𝑖𝑖) 18 602 14 536 2 851 57 421 
Number of customers (𝑠𝑠) 4 916 4 599 808 19 120 
Price of electricity (𝑖𝑖) 1.3177 1.0874 0.0660 4.4560 
Price of labor (𝑙𝑙) 21 860 390 21 250 23 160 
     
Panel C: owned by private investors (n=23)     
Variable cost (𝑖𝑖) 242 954 506 236 509 2 304 885 
Number of customers (𝑠𝑠) 89 709 193 788 158 802 484 
Price of electricity (𝑖𝑖) 0.5683 0.5803 0.0380 2.5280 
Price of labor (𝑙𝑙) 21 777 586 21 250 23 160 

 
 

 

 

 

 

 

 

 

 

 

 

 

 

  

Pr
iv

at
e 

In
ve

st
or

s 
Co

op
er

at
iv

el
y 

O
w

ne
d 

M
un

ic
ip

al
ity

 O
w

ne
d 

Figure A1: The MSE ratio of unrestricted and restricted conditional mode estimators, compared to 
the unrestricted 𝐸𝐸(𝑢𝑢|𝜀𝜀) with the simulations based on the data in the Application section 
- - - - -  Conditional mean 𝐸𝐸(𝑢𝑢|𝜀𝜀), reference   - - - - -   Conditional 𝑀𝑀𝑁𝑁𝑀𝑀𝑖𝑖(𝑢𝑢|𝜀𝜀) 
______ 𝑀𝑀𝑁𝑁𝑀𝑀𝑖𝑖(𝑢𝑢|𝜀𝜀), restricted with ∑𝑢𝑢     ______ 𝑀𝑀𝑁𝑁𝑀𝑀𝑖𝑖(𝑢𝑢|𝜀𝜀), restricted with ∑𝑢𝑢 & ∑𝑢𝑢2 

Half-Normal    Exponential   Truncated Normal 
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