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Abstract 
Merchant renewables are a new asset class.  With historically high cost structures 
and low wholesale prices associated with merit order effects, continuity of entry has 
been reliant on Renewable Portfolio Standards or other policy initiatives such as 
government-initiated Contracts-for-Differences.  But in Australia’s National 
Electricity Market, sharply falling costs of renewables and volatile wholesale market 
conditions from coal plant exits has led to a surprising number of merchant 
intermittent renewable investments. Adding to the merchant renewable fleet are 
older wind plants whose inaugural long-dated PPAs recently matured.  Rolling over 
PPAs is possible, but not necessarily optimal.  In this article, a merchant gas 
turbine, merchant wind, and an integrated portfolio comprising both plants are 
valued in the NEM’s South Australian region.  Asset valuations reveal surprising 
results.  The modelling sequence shows stand-alone gas turbine valuation metrics 
suffer from modest levels of missing money, that merchant wind can commit to 
some level of forward (fixed volume) swap contracts in-spite of intermittent 
production, but the combined portfolio tightens overall valuation metrics 
significantly.  Above all, the combined portfolio is financially tractable, overcoming 
the missing money for a gas turbine plant undertaking peaking duties.  In a NEM 
region where intermittent renewable market share exceeds 50%, this suggests the 
energy-only, real-time gross pool design may yet be deemed suitable vis-à-vis 
meeting environmental objectives and Resource Adequacy.  
 
Keywords:  Merchant renewables, peaking plant, power plant valuations.   
JEL Codes: D61, L94, L11 and Q40.   
 
A peer reviewed version of this working paper was subsequently published as:  
Simshauser, P. (2020), “Merchant renewables and the valuation of peaking plant in 
energy-only markets”, Energy Economics, Vol.91, pp104888. 
    
 
 
 

 
  

 
 Professor of Economics, Griffith Business School, Griffith University.  Views expressed in this article are those of the 
author.   
 Research Associate, Energy Policy Research Group, University of Cambridge. 

C
e

n
tre

 fo
r A

p
p

lie
d

 E
n

e
rg

y
 E

c
o

n
o

m
ic

s
 &

 P
o

lic
y
 R

e
s
e

a
rc

h
: W

o
rk

in
g

 P
a

p
e

r S
e

rie
s
 2

0
2
0

-0
1
 



 
 

 
Page 2 

1. Introduction 

Renewable Portfolio Standards and government-initiated Contracts-for-Differences (CfD) 
have been important policy measures for Variable Renewable Energy (VRE) entry, viz. 
wind and solar PV.  Historically high VRE total average costs meant side-payments were 
essential for entry continuity.  Compounding matters were so-called merit order effects – 
as more priority dispatched VRE entered, the supply curve shifted to the right placing 
downward pressure on clearing prices.  Merit order effects reinforced requirements for 
side-payments, with remaining plant profitability adversely affected.  Plant undertaking 
peaking duties, essential for reliability purposes, are thought to be particularly vulnerable  
(Hach and Spinler, 2016; Höschle et al., 2017; Bublitz et al., 2019; Milstein and Tishler, 
2019)1.  This called into question whether energy-only markets are able to meet both 
environmental and Resource Adequacy objectives.   
 
In the classic VRE entry case, renewables are placed into Special Purpose Vehicles, 
project financed and underpinned by long-dated run-of-plant Power Purchase Agreements 
(PPA) written by investment-grade utilities in response to Renewable Portfolio Standards 
(~9400MW in Australia’s NEM) or government-initiated CfDs (~1800MW2).  Equity 
invested, usually by infrastructure funds, sought stable running yields over time.  This 
investment model of the ‘non-market facing’ VRE plant will no doubt continue.   
But sharply falling VRE costs and longer-run business cycle dynamics of merit order 
effects mean alternate entry models are emerging.  In Australia’s National Electricity 
Market (NEM) a surprising number of VRE plant have entered on a fully merchant basis3 – 
18 solar PV projects (~1500 MW) and 5 wind projects (~870 MW) reached financial close 
during 2017-2019 (Panjkov, 2019).  Moreover, at least 10 mature incumbent wind plants 
(~600MW) have simultaneously found themselves with merchant exposures as inaugural 
10-15 year PPAs had run full-term. Furthermore, a rising number of VRE entrants (with 
PPAs) deliberately oversized entry capacity to acquire residual merchant exposures 
(~650MW).  Consequently, Australia’s NEM is accumulating a surprising amount of 
merchant VRE capacity.   
 
From an investment perspective, merchant VRE is a new asset class.  In an energy-only 
market with a Market Price Cap of AUD $14,700/MWh4 – amongst the highest in the world 
– it is probably not an investment class for the feint hearted given stochastic output. 
Rolling-over PPAs with incumbent Retailers is possible but may not be profit maximising.5  
Indeed as this research reveals, managing merchant VRE is no more challenging than 
managing stochastic retail loads.  VRE can participate in spot and forward markets while 
managing risks of ‘high price - low output’ events.   
 
Resource Adequacy in energy-only markets is a matter of constant interest to energy 
economists and policymakers, marked by a growing body of literature (Keay, 2016; 
Bhagwat et al., 2017; Keppler, 2017; Simshauser, 2018; Billimoria and Poudineh, 2019; 
Bublitz et al., 2019; Milstein and Tishler, 2019).  Yet even with rising VRE, provided 
reliability criteria has a tight nexus with the Market Price Cap6 there should be no question 

 
1 It is worth noting that in the NEM, it was baseload plant that were most adversely affected due to higher fixed & sunk costs. 
2 Also includes government-initiated Feed-in Tariffs for utility-scale plant. 
3 Merchant plant sell their output into the spot market and hedge price risk using short-term forward markets.    
4 All financial numbers expressed in AUD unless otherwise specified.  AUD $14,700/MWh equates to ~US$10,143/MWh and 
£7791/MWh (AUD/US ~0.69 and AUD/GBP ~0.53) at the time of writing. 
5 When an Independent Power Producer (IPP) negotiates with a large utility, the threat of not entering is used to avoid sub-
optimal outcomes.  Once a plant is sunk, the IPP loses this credible threat.  
6 In theory, from a power system planning perspective the overall objective function is to minimise 𝑉𝑜𝐿𝐿 𝑥 𝑈𝑆𝐸 +
 ∑ 𝑐(𝑅)𝑛

𝑖=1  | 𝑉𝑜𝐿𝐿 𝑥 𝑈𝑆𝐸 + 𝑐(�̂�) = 0, where 𝑉𝑜𝐿𝐿 is the Value of Lost Load, 𝑈𝑆𝐸 is Unserved Energy, and where 𝑐(𝑅) is the 

cost generation plant, and 𝑐(�̂�) is the cost of peaking plant capacity.  Provided these conditions hold, it can be said there is 

a direct relationship between Reliability and the Market Price Cap.  An alternate expression where reliability criteria is based 
on Loss of Load Expectation is 𝐿𝑜𝐿𝐸 = 𝐶𝑂𝑁𝐸/𝑉𝑜𝐿𝐿, where CONE is the cost of new entry.  For an excellent discussion on 
the relationship between a Market Price Cap and reliability criteria, see (Zachary, Wilson and Dent, 2019). 
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that investment in energy-only markets will flow under conditions of diminishing supply-
side reserves.  Imbalances induce a growing number, and intensity of, price spike events 
which drives investment in new capacity (Simshauser and Gilmore, 2019).   
 
The central question is whether plant investments occur in a timely manner rather than in 
response to a crisis, noting practical political limits exist vis-à-vis the severity and duration 
of wholesale market price shocks (Besser, Farr, and Tierney 2002; Hogan 2005; 
Simshauser 2018; Bublitz et al. 2019). The central objective of this article is to analyse the 
most complex of merchant investment commitments in energy-only markets – a price-
taking Open Cycle Gas Turbine (OCGT) plant undertaking peaking duties, and, merchant 
wind.  
 
OCGT investments are challenging because predicting peak prices requires much more 
information than prediction of baseload prices.  By their nature, peaking plant operate only 
during power system imbalances – extreme weather events, material plant outages or 
market power events.  And because such events are inherently uncertain, peaking plant 
income streams from spot markets are manifestly random and particularly hazardous 
(Peluchon, 2003; Bidwell and Henney, 2004; Simshauser, 2008). 
 
But markets have a way of navigating uncertainty. Practical evidence from Australia’s NEM 
is that gas turbines have been delivered on a timely basis through altering vertical 
business boundaries.  Of the 7250MW of gas turbine plant developed between 2000-2019, 
5350MW (75%) was via vertically-integrated merchant utilities7.   This dominant 
investment thesis had its underpinning in real options8 as a ‘physical hedge’ against 
stochastic customer load.  As vertical investments, gas turbines evidently overcame the 
many frictions, imperfections and bounded rationality that characterise forward electricity 
markets (Roques, Newbery and Nuttall, 2005; Simshauser, Tian and Whish-Wilson, 2015; 
Newbery, 2016). 
 
Merchant VRE presents an alternate investment thesis for gas turbines.  Just as OCGTs 
have more stable valuations when marked against stochastic customer load, more stable 
values should, in theory, be achievable when marked against market-facing stochastic 
merchant VRE plant.   
 
In the following analysis, OCGT and merchant wind are valued as stand-alone 
investments, then combined as a merchant portfolio.  The rich volatility associated with 
cyclical and structural energy-only market variations are captured using a diverse array of 
market conditions – 100 years of stochastic spot price data with 30-minute resolution 
based on the NEM’s South Australian region, where VRE market share now exceeds 50%.  
Non-convexities, imperfect plant availability and other important features of gas turbines 
are incorporated in a Unit Commitment Model which aggregates and transposes 30-minute 
data into 100 years of annual results.   
 
A Stochastic DCF Valuation Model then uses a Monte Carlo sub-sampling process to 
randomly draw annual results from the Unit Commitment Model to populate each future 
year of the plant’s useful life.  This Monte Carlo sub-sampling process is iterated 500 times 
to produce a valuation distribution for the various merchant generation assets.     
 
Valuation results confirm stand-alone OCGT plant is marginally sub-economic9, and that 
stand-alone wind in Australia’s NEM can commit to a portfolio of forward Swaps (or 2-way 

 
7 That is, large competitive Retail Supply businesses with generation portfolios, or merchant generators with significantly 
integrated forward Retail Supply positions. 
8 The origins of which can be traced back to (Myers, 1977). 
9 At least at this point in the energy market business cycle. 
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CfDs) in-spite of intermittent production.  When integrated, OCGT expected returns 
exceed entry costs, and the combined portfolio is found to have a materially tighter 
distribution of net revenues under a very wide range of wholesale market conditions – an 
important characteristic given capital market requirements.  Above all, the combined 
portfolio seems capable of ‘finding the missing money’. 
 
These findings present important implications for policymakers.  Modelling suggest when 
OCGT is integrated with merchant VRE in the NEM, tractable financial results emerge as a 
function of transaction cost economics.10  By implication, the NEM’s energy-only market 
appears capable of delivering peaking plant capacity on an economic basis (i.e. Resource 
Adequacy) with very high levels of VRE (i.e. >50% VRE market share).  Whether these 
results can be generalised to other jurisdictions is contingent on the relative pattern of VRE 
output and the relationship between Dispatch-Weighted and baseload prices. 
 
This article is structured as follows.  Section 2 reviews relevant literature.  Section 3 
outlines model inputs. Section 4 introduces the suite of models and Section 5 presents 
results.  Conclusions follow. 
 
2. Review of Literature 

There is enduring interest in the ability of energy-only markets to deliver power system 
reliability due to adequacy of generation plant returns.  Reliability should ideally be broken 
down into its component parts, viz. Resource Adequacy and System Security11 (Batlle and 
Pérez-Arriaga, 2008).  To be clear, the focus in this article is strictly Resource Adequacy in 
the context of i). energy-only markets ii). with rising VRE, and iii). and the valuation of gas 
turbine plant, each of which are reviewed below.  
 

2.1 Energy-only markets 
Resource Adequacy concerns in energy-only markets can be loosely traced back to Von 
der Fehr and Harbord (1995) who noted indivisibility of capacity, construction lead-times, 
lumpy entry, investment tenor and policy uncertainty make merchant generation unusually 
risky investments.  Early contributions on peaking plant include (Doorman, 2000; Besser, 
Farr and Tierney, 2002; Stoft, 2002; de Vries, 2003; Oren, 2003; Peluchon, 2003).12 
Bublitz et al., (2019) provide an excellent summary of the rapidly growing literature in the 
field.    
Of central concern is the stability of earnings and missing money, a concept formally 
introduced by Cramton and Stoft (2005, 2006).  The central idea behind missing money is 
net revenues earned in energy-only markets are suboptimal cf. expected returns.  Peaking 
plant are thought to be particularly susceptible given manifestly random revenues in 
organised energy-only spot markets (Peluchon, 2003; Simshauser, 2008; Bajo-
Buenestado, 2017; Keppler, 2017; Milstein and Tishler, 2019). 
 
Economic theory and power system modelling has long demonstrated organised spot 
markets can clear demand reliably and provide suitable investment signals for new 
capacity (Schweppe et al. 1988).  But theory and modelling is based on equilibrium 
analysis with unlimited market price caps, limited political and regulatory interference, and 
by deduction – largely equity capital-funded generation plant able to withstand elongated 

 
10 On transaction costs and vertical integration in the NEM, see Simshauser, Tian and Whish-Wilson (2015). 
11 Resource Adequacy means adequate installed plant capacity relative to expected peak demand and is essentially a long 
run concept (given entry lags).  System Security means the configuration of power system resources dispatched and 
enabled, and their ability to deal with credible contingencies – and is thus a real-time concept.  
12 See also (Bushnell, 2004; Wen, Wu and Ni, 2004; Neuhoff and De Vries, 2004; Hogan, 2005, 2013; Roques, Newbery and 
Nuttall, 2005; Cramton and Stoft, 2006; Simshauser, 2008; Finon, 2008; Finon and Pignon, 2008; Joskow, 2008; Spees, 
Newell and Pfeifenberger, 2013; Cramton, Ockenfels and Stoft, 2013).  Entire editions of academic journals have been 
dedicated to the topic.  See for example Utilities Policy Volume 16 (2008) or Economics of Energy & Environmental Policy 
Volume 2 (2013). 
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‘energy market business cycles’ (Simshauser, 2010; Arango and Larsen, 2011; Cepeda 
and Finon, 2011; Bublitz et al., 2019).   
 
Good economic theory often collides with harsh realities of applied corporate finance.  In 
practice, energy-only markets are rarely in equilibrium.  Persistent pricing at marginal cost 
does not result in a stable equilibrium given substantial sunk costs – a problem understood 
at least as far back as (Hotelling, 1938; Boiteux, 1949; Turvey, 1964).  Because merchant 
generators face rigid debt repayment schedules, theories of organised spot markets suffer 
from an inadequate treatment of how non-trivial sunk capital costs are financed (Joskow, 
2006; Finon, 2008; Caplan, 2012).13   
 
Generator pricing must deviate from strict marginal cost at some point, but given 
oligopolistic market settings distinguishing between loss-minimising behaviour and an 
abuse of market power is difficult (Cramton and Stoft, 2005, 2008; Roques, Newbery and 
Nuttall, 2005; Joskow, 2008; Simshauser, 2008).  Further, actions by regulatory authorities 
and System Operators frequently suppress legitimate price signals (Joskow, 2008; Hogan, 
2013; Spees, Newell and Pfeifenberger, 2013; Leautier, 2016)14.  Australia’s NEM is also 
suffering from various forms of political interference (Simshauser, 2019b; Wood, Dundas 
and Percival, 2019).  
 
Risks to timely entry may arise from capital constraints.  In the early phases of the global 
restructuring and deregulation experiment, a vast fleet of merchant plant was project 
financed on the basis of forecast spot prices and short term forward contracts (Joskow, 
2006; Finon, 2008; Simshauser, 2008).15  But recurring damage to merchant generator 
profit & loss statements, a product of structural oversupply and episodes of missing 
money, eventually led project banks to tighten risk tolerances and credit metrics 
(Simshauser, 2010).16   
Of central importance is ‘incomplete markets’ – the seeming inability of energy-only 
markets to deliver the optimal mix of derivative instruments required to facilitate efficient 
plant entry, specifically, long-dated contracts sought by risk averse project banks (Joskow, 
2006; Chao, Oren and Wilson, 2008; Howell, Meade and O’Connor, 2010; Meade and 
O’Connor, 2011; Caplan, 2012; Meyer, 2012; Nelson and Simshauser, 2013; Newbery, 
2017, 2016; Grubb and Newbery, 2018; Bublitz et al., 2019).   
 
Australia’s NEM is noted for favourable forward market liquidity as Figure 1 illustrates.17 
But activity only spans 3 years, well short of optimal financing comprising 5-12 year semi-
permanent project debt facilities set within 18+ year structures.   
  

 
13 Fixed and sunk costs in energy-only markets are, in theory, recovered during price spike events.  But participants are 
unable to optimise the frequency and intensity of price spikes (Cramton and Stoft, 2005).  Moreover Market Price Caps are 
frequently set too low (Batlle and Pérez-Arriaga, 2008; Joskow, 2008; Petitet, Finon and Janssen, 2017; Bublitz et al., 2019; 
Milstein and Tishler, 2019) in which case a stable financial equilibrium can only be reached if the power system is operating 
near the edge of collapse (Bidwell and Henney, 2004; Simshauser and Ariyaratnam, 2014). 
14 See also (Besser, Farr and Tierney, 2002; de Vries, 2003; Oren, 2003; Wen, Wu and Ni, 2004; Batlle and Pérez-Arriaga, 
2008; Finon and Pignon, 2008). 
15 This included 230,000MW in the US, 13,000MW in Australia and more than 6000MW of new plant in the UK.  See 
(Joskow, 2006; Finon, 2008; Simshauser, 2010) for details.  
16 By 2005, more than 110,000 MW of merchant plant in the US, much of the Australian merchant fleet and various high 
profile plant in the UK (e.g. Drax) experienced financial distress or bankruptcy (Joskow, 2006; Finon, 2008; Simshauser, 
2010).  Consequently, the canonical merchant generator model became un-bankable in the absence of long-term contracts 
(Finon, 2008, 2011).  There is considerable evidence to suggest timely entry on a purely stand-alone merchant basis is 
intractable in energy-only markets (Joskow, 2006; Howell, Meade and O’Connor, 2010; Simshauser, 2010; Caplan, 2012; 
Nelson and Simshauser, 2013).   
17 See for example (Chester, 2006; Anderson, Hu and Winchester, 2007; Howell, Meade and O’Connor, 2010; Simshauser, 
Tian and Whish-Wilson, 2015). 
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 NEM forward market liquidity 1999-2019 

 
Sources: AFMA, AEMO. 

 
Collectively, these characteristics create risks for timely investment required to meet power 
system reliability criteria (Bidwell and Henney, 2004; Cramton and Stoft, 2006; de Vries 
and Heijnen, 2008; Roques, 2008; Hirth, Ueckerdt and Edenhofer, 2016).  Concerns over 
Resource Adequacy are compounded by the fact that large segments of real-time 
aggregate demand are price-inelastic and unable to react to scarcity conditions, and 
similarly in the short run, supply is inelastic because storage remains costly (Batlle and 
Pérez-Arriaga, 2008; Cramton and Stoft, 2008; Finon and Pignon, 2008; Roques, 2008; 
Bublitz et al., 2019).   
 
In Australia’s NEM, vertical integration became the means by which to deal with the unique 
characteristics of merchant plant and the complexity of writing long-dated contracts.  This 
complexity includes high asset specificity, bounded rationality, asymmetric information 
between generators and retailers, long asset lives, and unusually high financial hazards 
with ex-ante capital-intensive investment commitments (Roques, Newbery and Nuttall, 
2005; Simshauser, 2010; Simshauser, Tian and Whish-Wilson, 2015).18     
 

2.2 On VRE 
Near-zero marginal running costs of VRE plant, subsidised through side-markets, are 
thought to destabilise energy-only markets through merit order effects19.  The basic 
principle underpinning the merit order effect is (subsidised) zero marginal cost VRE plant 
enters at the bottom of the merit order of plant, thus shifting the long-flat base load 
component of a power system’s aggregate supply function to the right. Ceteris paribus, 
prices fall (Sensfuß et al. 2008).   

 
18 Three broad policy remedies are typically suggested to deal with the missing money and risks to timely investment viz. (1) 
introducing capacity markets or strategic reserves, (2) raising the Market Price Cap, or (3) introducing additional Operating 
Reserves.  On capacity markets see (Bidwell and Henney, 2004; Green and Staffell, 2016).  On setting higher VoLL and 
Vertical Integration see for example (Joskow, 2006; Finon, 2008; Simshauser, Tian and Whish-Wilson, 2015).  On increasing 
the requirement for operating reserves and enhancing reliability of supply see (Hogan, 2005, 2013).  (Hogan, 2013) notes 
there is no simple way to observe and measure delivery in Capacity Markets.  Conversely, (Cramton and Stoft, 2008) 
observe that even if capacity is overbuilt as a result of capacity mechanisms, the incremental cost to consumers is small 
because excess ‘peaking plant’ is the cheapest form of capacity (viz. an extra 10% of peak capacity may increase consumer 
costs by say 2%).  Additionally, (Spees, Newell and Pfeifenberger, 2013) observe that on balance capacity markets in the 
US have delivered good results in that they met their objective function, mobilised large amounts of low cost supply including 
Demand Response, energy efficiency, transmission interconnection, plant upgrades, deferred retirements and environmental 
retrofits.  
19 Various countries including Germany, Denmark, Spain, Australia and North America are now routinely experiencing 
negative spot prices (Bunn and Yusupov, 2015). 
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I will refer to this as the generalised merit order effect, i.e. plant oversupply causes prices 
to fall. A diverse field of literature analyses whether the cost of obtaining generalised merit 
order effects (i.e. side payments) are justified by falls in price.20   
 
VRE entry produces multiple effects, over multiple time-horizons.  In the NEM, the diurnal 
pattern of wind has an off-peak bias, and solar PV has a peak bias21.  The first VRE plant 
installed in a large thermal system is therefore likely to earn a Dispatch-Weighted Price 
slightly below (wind) or well above (solar) average baseload prices (Mills, Wiser and 
Lawrence, 2012; Nicolosi, 2012; Hirth, 2013; Simshauser, 2018). But as more VRE plant 
enters a series of price and production effects become visible over the short, medium and 
long run – not all of these leading to lower prices.  Consequently, generalised merit order 
effects need to be decomposed across a full energy market business cycle:   

 
1. Holding aggregate demand constant, adding any form of new supply (VRE, coal, 

nuclear, transmission interconnect) produces a merit order effect.  Merit order 
effects are not specific to VRE (Felder, 2011; Nelson, Simshauser and Nelson, 
2012).  But VRE does produce unique dynamics (Hirth, 2013; Simshauser, 2018; 
Johnson and Oliver, 2019). 
 

2. VRE price impression effects arise from a given technology’s correlated production, 
driven by cumulative ‘VRE plant on’.  The first solar plant will earn a price well 
above baseload prices.  The addition of other stochastic, but correlated plant from 
that asset class shifts the (short-run) aggregate supply curve to the right.  This has 
an impressing impact – exerting a technology-specific downward pressure on spot 
prices at certain times (Mills, Wiser and Lawrence, 2012; Nicolosi, 2012).  
Consequently, Dispatch-Weighted Prices of wind or solar as an asset class can be 
expected to deteriorate within a region relative to base prices as more of that 
technology class enters (Edenhofer et al., 2013; Hirth, Ueckerdt and Edenhofer, 
2016).   
 

3. VRE stochastic production effects arise as a result of cumulative ‘VRE plant off’.  
When wind or solar output is low, the (short run) aggregate supply curve shifts 
back to the left and when combined with fluctuating demand can be expected to 
intensify price volatility – producing distinctly elevated prices (Clò, Cataldi and 
Zoppoli, 2015).  Johnson and Oliver (2019) identify conditions whereby stochastic 
production effects dominate price impression effects. 

 

Figure 2 depicts price impression effects from cumulative VRE solar on and stochastic 
production effects from cumulative VRE solar off via August 2019 average 30-minute spot 
price data from the NEM’s Queensland Region (i.e. high levels of utility-scale and rooftop 
solar PV). 
  

 
20 See (Sensfuß, Ragwitz and Genoese, 2008; Forrest and MacGill, 2013; Joskow, 2013; Cludius, Forrest and MacGill, 2014; Bell et al., 

2015, 2017; Keay, 2016; Newbery, 2016; Green and Staffell, 2016; Hach and Spinler, 2016; Keppler, 2017; Lunackova, Prusa and Janda, 

2017; Benhmad and Percebois, 2018; Bublitz et al., 2019; Johnson and Oliver, 2019). 
21 Peak and off-peak being defined in the traditional sense; peak being nominally 7am-10pm working weekdays.  As one Reviewer also 

noted, solar PV output in cold-climate countries is not well correlated with peak demand – at least by comparison to hot climate 

jurisdictions, such as South Australia, Queensland and California, for example. 
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 VRE price impression effect and VRE stochastic production effect 

 
Data: AEMO 

 
4. Thermal plant flexibility effects amplify price impression effects.  When VRE fleet 

output is high and spot prices fall below unit fuel costs, thermal plant can only 
reduce output to minimum stable loads.  Generalised merit order effects therefore 
comprise two distinct downward forces, price impression effects, amplified by 
thermal plant overproduction due to flexibility limits (Nicolosi, 2012; Bunn and 
Yusupov, 2015).  Figure 3 illustrates flexibility effects, contrasting average August 
2019 output from a 280MW coal-fired unit in Queensland (RHS axis) with average 
spot prices (LHS axis).   

 Thermal plant flexibility effect 

 
Data: AEMO 
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5. Utilisation effects follow.  Inflexible coal plant are adversely impacted by two forces; 
i). lower average prices in the post-VRE entry environment, and ii). progressively 
lower output, ultimately falling to some minimum critical level (Höschle et al., 2017).  
Given suboptimal output levels and heavy sunk costs, coal plant begin to ‘slide up’ 
their average cost function.  Simultaneously confronting falling prices, the marginal 
coal plant becomes sub-economic and exits (Hirth, 2013; Simshauser, 2018).   

 

Utilisation effects are the crucial long run corollary to short/medium-run generalised merit 
order effects.  Figure 4 illustrates Northern Power Station’s utilisation effect, the last coal 
plant in the NEM’s South Australian region which had historically been #1 in the merit 
order.   

 Thermal plant ‘utilisation effect’ 

 
Data: AEMO 

 
6. Following cumulative coal plant exit, a rebound effect follows.  Generalised merit 

order effects associated with oversupply rapidly unwind (Felder, 2011; Nelson, 
Simshauser and Nelson, 2012; Hirth, 2013, 2015; Simshauser, 2018, 2019a, 
2019b).  To be clear, this is a long run dynamic.  Figure 5, which presents NEM 
average annual electricity prices from 1999-2019, highlights rebound effects 
following the cumulative exit of 11 coal plants (~5100MW or 18% of the thermal 
plant stock) between 2012-2017.22 

  

 
22 The final two generators in 2016 (Northern, South Australian region) and 2017 (Hazelwood, in the Victorian region) 
represented a distinct tipping point in the market. 
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 Rebound Effect23 

 
Source: Simshauser & Gilmore (2019), ABS, AEMO. 

The combination and sequencing of these effects over a full energy market business cycle 
should come as no surprise (Felder, 2011; Nelson, Simshauser and Nelson, 2012; 
Simshauser, 2019a).  After all, the purpose of VRE side-markets is to induce new entry 
and transition the supply-side of energy markets, includes phasing out coal plant.  There is 
no reason to believe such policies will not be successful in the long run.  This has 
important implications for OCGT plant valuations. 
 

2.3 On the valuation of OCGT plant 
A rich and diverse literature on generation plant valuation exists, spanning technologies, 
financing structures and business models including merchant, tolled, and PPA-contracted 
assets (Gardner and Zhuang, 2000; Deng, Johnson and Sogomonian, 2001; Tseng and 
Barz, 2002; Hlouskova et al., 2005; Hogan, 2005; Abadie and Chamorro, 2008; Heydari 
and Siddiqui, 2010; Fernandes, Cunha and Ferreira, 2011; Elias, Wahab and Fang, 2016; 
Simshauser and Gilmore, 2019).   
 
Of central importance to the valuation of gas turbine plant is the real option value of the 
expected difference between the price of electricity and unit fuel costs (i.e. a function of 
plant heat rate and cost of natural gas) known as the Spark Spread.  The range of 
modelled prices, price resolution, and plant valuation approaches to spread options is 
extensive.  There are four broad streams involving the use of futures prices and/or some 
form of mean-reverting or random walk forecasting process (see Baker, Mayfield and 
Parsons, 1998; Pindyck, 1999): 
 

1. Simple spread options using futures data, solved analytically and assuming perfect 
plant flexibility and plant availability (Deng, Johnson and Sogomonian, 2001; 
Carmona and Durrleman, 2003; Fleten and Näsäkkälä, 2010);  

 
2. Tree methods, which emerged to solve optimal investment and unit commitment 

decisions by relaxing the simplifying assumptions around physical plant 
characteristics and non-convexities – incorporating start-up costs, ramp rate 
constraints, minimum run times and random outages (Gardner and Zhuang, 2000; 
Tseng and Lin, 2007; Abadie and Chamorro, 2008; Elias, Wahab and Fang, 2016, 
2017);     

 
23 Note that the data in Figure 5 excludes the $23/t CO2 carbon tax applicable in 2013 and 2014. 
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3. Real options approach incorporating Monte Carlo simulation techniques to capture 

underlying stochastic factors known to be important drivers of value (Tseng and 
Barz, 2002; Hlouskova et al., 2005; Heydari and Siddiqui, 2010; Cassano and Sick, 
2013; Wang and Min, 2013; Abadie, 2015) 24; and  
 

4. Power system simulation models or ‘structural models’ which capture system-wide 
plant availability and load variability driven by anthropogenic patterns and 
seasonality with specific results fed into a conventional Discounted Cash Flow 
(DCF) Model.25  Contemporary power system models simulate hundreds of 
generation and spot price scenarios for a given (inelastic) load curve, with an 
objective function of cost minimisation subject to reliability constraints.  Structural 
models are particularly well-suited to providing insight into causes of intermediate-
run fluctuations, but are data (and processing-) intensive (Pindyck, 1999).26   

 
The modelling sequence in this research lies between the 3rd and 4th streams. 
 
3. Valuation model inputs 

For applied transaction purposes, plant valuation ideally involves the triangulation of three 
pieces of analysis; i). DCF Model based on an energy price forecast, ii). estimated 
replacement cost, and iii). recent comparable transactions.  The purpose of this article is to 
focus on the first of these (i.e. modelled result) for three specific merchant business 
combinations: 
 

1. new entrant 3 x 30MW aero-derivative OCGT; 
  

2. incumbent 250MW Wind Portfolio, Annual Capacity Factor (ACF) of ~31%; and   
 

3. integrated portfolio comprising 1). and 2). above. 
 
Generation assets are strictly merchant meaning output is sold into organised spot 
markets and hedged in short-term forward markets (Nelson and Simshauser, 2013; Wang 
and Min, 2013).  There are no long-dated contracts – this includes Wind plant, its inaugural 
PPA is assumed to have expired.   
 

3.1 OCGT Plant 
OCGT valuations in energy-only markets are complex because unlike base, semi-base 
and VRE plant which have relatively constant load factors, peaking duties involves 
extensive variations in ACFs – some years operating as little as 1% – prima facie making 
bankability problematic (Simshauser, 2010; Finon, 2011; Caplan, 2012; Nelson and 
Simshauser, 2013; Keppler, 2017; Bublitz et al., 2019; Milstein and Tishler, 2019).  As 
Peluchon (2003, p2) noted long ago: 
 

 
24 (Cassano and Sick, 2013) is a particularly interesting analysis where they model 2 x LM6000 and a Steam Turbine, and 
model all plausible operating modes (i.e. cold off, idle, open cycle and combined cycle) as a call option over the spark spread 
– converting the two dimensional problem into one by using the market heat rate (i.e. electricity divided by gas price) based 
on the principles of (Margrabe, 1978).  Using a bootstrap process to simulate future heat rates, they find the average market 
heat rate is a good explanatory variable for the time integral of the plant operating margin. 
25 Structural models in the electricity industry are typically security-constrained, unit commitment models with an engine 
comprising a Monte Carlo-based Linear Programme – the design of which can be traced back to the joint work by Electricite 
de France Chief Economist Marcel Boiteux and State Electricity Commission of Victoria Chief Engineer Dr Rob Booth – 
applying the principles of (Calabrese, 1947), (Boiteux, 1949), (Berrie, 1967) and (Booth, 1972).   
26 And if estimates of technology long run marginal costs are comparatively stable over time, such models are capable of 
providing helpful insights beyond the intermediate-run.  The usual caveats apply. 
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Peak capacity investment, especially, seems quite problematic. An investment in 
base generation plant is a decision that requires forecasting base future prices. An 
investment in peak generation plant is a decision that requires much more 
information as peak prices depend on base prices as well as from the future 
investments in every other kind of generation capacity. The revenue generated by 
peak plant is therefore much more hazardous than base plant, since it produces 
only when every other plant produces at full capacity or cannot produce. In the 
same way an option is said to be ‘out-of-the-money’, peak plant has a value that 
may change drastically with any change in the way the supply-demand balance 
evolves . . . 

 
Of critical importance is the inclusion of forward contracts as these stabilise expected 
revenues.  In the NEM, the relevant forward derivative contract is the $300 Cap27.  The 
plant being valued is 3 x GE LM2500 gas turbines with an installed capacity of 97.5MW at 
ISO28, and 90MW at summer-rated site conditions (Table 1).  In the circumstances, it is 
helpful to consider the valuation for an M&A transaction involving new plant29.  
Aeroderivative GTs are ideally suited for integrating with merchant wind due to their rapid 
starting profile – from cold iron to full load in five minutes without restriction.30  Table 1 
presents relevant technical and financial data.   
 

 Gas Turbine Data 

 
 

3.2 Modelled spot prices 
The critical variable in any plant valuation exercise is the commodity price forecast 
(Pindyck, 1999).  NEM forward prices span 36 months and given the capital-intensive 
nature of equipment, long-dated investment horizon and tenor of any semi-permanent debt 

 
27 The $300 Cap is traded both on-exchange and in the Over-The-Counter market. 
28 Ambient temperature, altitude and humidity affect Gas Turbine output and performance (ie. Power output is dependent on 
the mass flow through the compressor, and as air density decreases, more power is required to compress the same mass of 
air, which reduces output and thermal efficiency).  Consequently, the standard reference conditions for Gas Turbine Plant 
(ISO 3977) are 15oC, 101.3 kPa. 
29 An M&A transaction involves an overnight transaction, and thus avoids detailed construction cash flow modelling. 
30 LM2500s are a mature technology with 2460 units in service globally, having collectively accumulated 92 million operating 
hours. My thanks to the team at GE Australia. 

Gas Turbine LM2500 Aeroderivative

Technical Data

Rated Capacity at ISO 32.5                   MW

Max Capacity at Site 30.0                   MW

Minimum Stable Load 3.0                     MW

Thermal Efficiency 34.0                   % HHV

Heat Rate Full Load 9.5                      GJ/MWh

Start-up Fuel Use 23.75 GJ

Start-up Time (Cold Start) 5 Minutes

Ramp Rate 240 MW/min

Hot Path Inspections 25000 Fired Hours

Overhaul 50000 Fired Hours

Financial Data

Capital Cost $1,050 per kW installed

Unit Gas Cost $9.50 per GJ*

Gas Transportation $1.00 per GJ

Variable O&M $10 per MWh

Fixed O&M $2,200,000 per annum

Insurance $500,000 per annum
* In the NEM's day-ahead gas markets prices fluctuate between $4.00 - $14/GJ.  In this analysis, 

a fixed gas price of $9.50/GJ is used.  As a peaking plant with very low ACFs, the use of dynamic 

gas prices would marginally improve modelling results - noting its primary purpose is to defend 

$300 Caps (i.e. equivalent gas price of $29/GJ) .  
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structure subsequently deployed – longer-term modelled prices are necessary.  Structural 
models are almost exclusively used for this purpose by NEM practitioners (i.e. utilities, 
equity investors, project banks) in M&A transactions and greenfield investment 
commitments alike.   
 
Security-constrained unit commitment models are built on a mean-reverting equilibrium 
framework, with 30-minute resolution Monte Carlo LP engines generating dozens of 
simulation scenarios for a given load curve.  An average of simulation runs is then rolled-
up for use in DCF Models with Quarterly or Annual resolution.  The averaging process 
makes these models particularly well-suited for base, semi-base and VRE plant valuations 
with a special focus over the relative near-term (Pindyck, 1999) – notionally, the 3-5 year 
window for which existing Boards, Executive Management, Investment and Credit 
Committees of the NEM practitioners are held directly accountable for.   
 
This same process is not, however, well suited for merchant OCGT plant undertaking 
peaking duties in energy-only markets.  Power system simulation models are designed to 
revert to equilibrium and tend to understate sharp and volatile changes in system 
conditions that prevail in practice, such as transient system constraints and extreme 
weather events.  Modelled outputs are further smoothed prior to being transposed to DCF 
Models because the dozens of simulation results are averaged.  In the real world, a single 
final result – frequently off-equilibrium – prevails.  Being able to generate power 
strategically, or withdraw quickly, is a source of considerable value (Cassano and Sick, 
2013).  Capturing extremities of the physical spot market, and physical constraints that 
accompany OCGT unit commitment is therefore, in my opinion, essential to any OCGT 
plant valuation process.  Ignoring the former understates plant valuations, and ignoring the 
latter overstates plant valuations. 
 
Rather than use a structural model, in this article 100 years of stochastic spot price data 
(n=100) at 30-minute resolution (t = 17,520) has been generated from historic South 
Australian NEM region data.31  The benefit of using South Australian spot (and forward) 
data over the 10-year period 2010-2019 as a base is that the price series captures a 
complete energy market business cycle comprising:  
 

1. Over-capacity and well documented merit order effects32 arising from cumulative 
wind and solar PV entry to world-record market shares of 50+%, and  

 
2. severe supply-side shocks (i.e. rebound effects) arising from cumulative thermal 

plant exit (see Simshauser, 2019a). 
 

Summary statistics of the 10-year historic/actuals and 100-year stochastic spot price data 
set (annual results) are presented in Table 2 and Figure 6.33   
 
  

 
31 Historic spot prices from 2012-2019 are used as a base, and are then both scaled and sampled to amplify average price and price 

volatility. 
32 See for example (Forrest and MacGill, 2013; Cludius, Forrest and MacGill, 2014). 
33 Australia had a carbon tax from 2012-2014.  Historic data used to build the stochastic data set included this period and consequently 
~30 out of 100 years includes an explicit price on carbon.  Inclusion in all years would in theory increase the value of the wind plant, and 

marginally reduce the value of the OCGT plant.  Note in subsequent years (e.g. 2016-2019) average spot prices were higher with similar 

volatility to the carbon tax period. 
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 Statistical summary of Annual Spot Prices 
Panel A: Actual (2010-2019) vs. Modelled (n=100) 

 
 

Panel B: Stochastic Spot Price Data (Annual) Probability of Exceedance (PoE) 

 
 

Of critical importance for OCGT valuation (and Cap derivative modelling) purposes is intra-
year spot price volatility.  Figure 6 illustrates the dispersion of the stochastic spot price 
data set (annual average price, x-axis) and intra-year volatility (measured by the 
contribution to average prices from > $300/MWh price spike events, y-axis).  Note the 
overall average spot price is ~$73/MWh34, of which the contribution from volatility events 
(>$300/MWh) is $10/MWh.35   
  

 
34 The average spot price of $73/MWh is marginally below the 2016-2020 entry cost benchmark of $75-80/MWh in 
Simshauser & Gilmore (2019).  This trivial difference is not important to the analysis undertaken in this research in that 
higher average prices would only serve to further reinforce (i.e. would not reverse) the findings in Section 5. 
35 Alternatively put, the underlying average spot price excluding volatility events is $63/MWh (i.e. $73/MWh - $10/MWh), and 
the ex post Fair Value of $300/MWh Caps is $10/MWh. 

Historic Spot 

Prices

Stochastic Spot 

Prices

Observations (n =) 10                      100                       

                      (t =) 175,200             1,752,000            

Annual Average Price 72.36                 73.15                    

Std Deviation 25.58                 24.47                    

Coeff. of Variation 0.35                   0.33                      

PoE5 Price 105.92               110.00                  

PoE95 Priec 46.03                 37.89                    

Maximum Price 109.29               117.92                  

Minimum Price 43.79                 29.01                    

Probability of Exceedance 1% 5% 25% 50% 75% 95% 100%

Scenario Year (n=100) (n) 89 71 10 30 91 51 21

Trading Intervals (t=17520) (t) 17520 17520 17520 17520 17520 17520 17520

Average Spot Price ($/MWh) 117.92 110.00 95.91 72.90 51.09 37.89 29.01

Standard Deviation  ($/MWh) 398.71 269.67 267.58 242.32 115.78 131.91 81.40

Coeff. of Variation  ($/MWh) 3.38 2.45 2.79 3.32 2.27 3.48 2.81

Volatility > $300     ($/MWh) 21.73 14.69 10.26 9.58 3.03 5.51 3.33

Frequency of > $300 events  (t) 500 457 123 171 39 80 20

Frequency of > $1000 events (t) 35 30 48 25 13 21 8

Frequency of Negative Prices (t) 275 138 209 742 72 154 154

Frequency of Negative Prices (%) 1.6 0.8 1.2 4.2 0.4 0.9 0.9

Wind Dispatch Weighted Price (%) 82.1 81.5 86.9 83.6 89.5 76.6 77.3
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 Stochastic spot prices – Annual Average vs Annual Volatility (>$300 spikes) 

 
 

3.3 Wind and Dispatch-Weighted Price 
For valuation purposes the wind plant is assumed to have a (depreciated) capital-cost 
base of $1750/kW, Fixed O&M costs of $10,000/MW installed and Variable O&M costs of 
$12/MWh with an average ACF of 32.1% (min 28.2% and max 33.9%).  Note subsequent 
analysis excludes any form of side-market (i.e. Renewable Certificate36) revenues.   
 
An important variable in the subsequent analysis is the ‘earned price’ of wind turbine 
generators (i.e. Dispatch-Weighted Price).  As an absolute general conclusion, the annual 
Dispatch-Weighted Price cannot be greater than the time-weighted spot price because: 
 

• NEM wind generation output tends to have an off-peak bias; and 
 

• When demand is higher than forecast, all else equal, dispatchable generators 
increase output and receive a higher average price.  Conversely, stochastic 
generators reduce output disproportionately in periods of oversupply and hence 
sell at disproportionately lower prices (Joskow, 2011; Mills, Wiser and Lawrence, 
2012; Edenhofer et al., 2013; Hirth, 2013; Simshauser, 2018).   

 
Consequently, the annual Dispatch-Weighted Price will be less than 100% of the time-
weighted spot price – particularly as wind market share increases.37  This critical 
relationship must be maintained between the 100 years of stochastic 30-minute spot price 
data and 30-minute wind production data.  If not, wind plant valuation results will almost 
certainly be over-stated.38  Figure 7 confirms the Dispatch-Weighted Price of the merchant 
250MW Wind ranges from 77-91% (average = 84%)39. 
  

 
36 In practice this would add ~$100-$150m to plant valuations. 
37 As an aside, for solar PV at-scale it is even more pronounced as Figure 2 tends to suggest.  See also (Mills, Wiser and 
Lawrence, 2012; Nicolosi, 2012; Hirth, 2013; Simshauser, 2018).   
38 I should note that there are a small number of wind farms in the NEM that have Dispatch-Weighted Prices (DWP) with 
near perfect correlation to baseload prices, year-on-year.  I am not aware of any wind farms with a DWP materially 
exceeding baseload prices.  
39 Dispatch-Weighted Prices (%) are based on historic data from three wind farms in South Australia over the period 2012-
2019. 

y = 0.1685x - 2.424
R² = 0.7487

 -

 5

 10

 15

 20

 25

 -  20  40  60  80  100  120

Volatility Value >$300 

($/MWh)

Time-Weighted Spot Price ($/MWh)

Time-Weighted Average $73/MWh

Volatility Value >$300 $10/MWh



 
 

 
Page 16 

 Spot Price vs Wind Portfolio Dispatch Weighted Price (% of Time Weighted) 

 
 

3.4 Modelled $300 Cap Futures 
Incorporating forward market revenues is a critical component of any merchant plant 
valuation exercise.  Merchant plant does not mean ‘spot sales only’.  The sale of forward 
derivatives are essential from a cashflow management perspective, and drive unit 
commitment.  In Australian financial markets the two most commonly traded electricity 
derivatives are Swaps and $300 Caps40, the latter being the forward contract of choice to 
manage risks associated with load uncertainty and extreme price spike events.  The 
traded history of $300 Caps in the NEM’s SA region (daily resolution) is presented in 
Figure 8. 

 $300 Cap Futures – Calendar Year Strips 2008-2021 (constant 2019 dollars) 

 
Source: ASX, ABS. 

 

 
40 $300 is a long-standing NEM convention that provides sufficient headroom for all peaking plant to be economically 
dispatched even if operating on liquid fuels. 
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The theoretical equilibrium price of $300 Caps can be derived by calculating a Boiteux 
Capacity Payment, viz. carrying cost of an OCGT undertaking ‘reserve duties’, expressed 
in $ per MW per hour.  Given OCGT cost data in Table 1, this equates to ~$14/MWh.41   
 
Ex ante, $300 Caps trade at a premium to their ex post Fair Value – an expected result 
given the nature of the instrument.42  Figure 9 re-organises Figure 8 data into a ‘3-Year 
Accumulated Portfolio’ price trace (solid line series) over the 10-year period 2010-2019.  
The Accumulated Portfolio involves progressively layering Caps into a portfolio over the 
three-year period leading up to real-time.  The 10-Year ex ante average traded Cap Price, 
and ex post average Cap Settlement is also illustrated (dashed and dotted line series), 
revealing an ex ante Cap premium of ~30%.     

 3-Year Accumulated Portfolio of $300 Cap & Cap Payouts (2010-2019) 

 
Source: ASX, AEMO, ABS. 

 

Table 3 presents a statistical summary of Traded Caps, their ex post Fair Value, and a 
comparison between the historic/actual 3-Year Accumulated Portfolio (2010-2019) and 
modelled 3-Year Accumulated Portfolio used in this research, which has been estimated 
via Eq.(1).  Note Eq.(1) modelled prices for the Accumulated Portfolio are broadly 
consistent with the historic 2010-2019 Accumulated Portfolio, viz. 𝜇𝑐 ≅ $13/𝑀𝑊ℎ, 𝜎𝑐 ≅
$3/𝑀𝑊ℎ with Coefficient of Variation ~0.24. 
 

 
41 See Simshauser & Gilmore (2019, p269) for a detailed analysis of the calculation using the ‘PF Model’ with both on- and 
off-Balance Sheet financing structures. 
42 Caps are an insurance product used by Retail Suppliers to manage risk exposures associated with extreme weather 
events – events which by their nature are only likely to occur 1-in-10 years.  For Retailers, dual-impacts of high price and 
high volumes raises the possibility of financial distress. 
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 10-Year Statistical summary of $300 Cap Strips (2010-2019) – Actual and Modelled 

 
Source: ASX, AEMO (for Traded Caps and Fair Value ex post) 

The modelled 3-Year Accumulated Portfolio of $300 Caps is tightly aligned with the 
stochastic spot price data set, as follows:   
 

𝑝𝑐
𝑛,𝑖 = 𝜇𝑐 − (2.25 ∙ 𝜎𝑐) + [(𝐹𝑉𝑐

𝑛−1,𝑖 + 𝐹𝑉𝑐
𝑛,𝑖) 2⁄ ] ∙ (1 + 𝛿𝑐) | 𝛿𝑐 = 𝜇 − 𝐹𝑉𝑐 , (1) 

where: 

𝑝𝑐
𝑛,𝑖 = modelled prices of an Accumulated Portfolio of $300 Caps c in year n and 

                 iteration i (and i = 1..500) 

𝜇𝑐 = long run average of the 3-Year Accumulated Portfolio of $300 Caps 

𝜎𝑐 = standard deviation of the 3-Year Accumulated Portfolio of $300 Caps 

𝐹𝑉𝑐
𝑛,𝑖

 = ex post Fair Value (i.e. payout) of $300 Caps from stochastic spot prices 

in  
   year n and iteration i 

𝛿𝑐 = long run observable Cap Premium (30%, per Figure 9) 
 

Figure 10 illustrates 10 samples of modelled ‘Accumulated Portfolio of $300 Caps’ traces 
(i.e. i=10 of 500 iterations, n=25 years, the nominal project life for valuation purposes).  
Cap prices ($/MWh) are measured on the y-axis for each valuation year n on the x-axis.   

 Modelled Accumulated Portfolio of $300 Caps vs Entry Cost (i=1..10 of 500) 

 
 

Avg of Traded 

$300 Caps

Fair Value $300 

Cap Ex Post

2010-19 $300 Cap 

Accum. Portfolio

Modelled $300 Cap  

Accum. Portfolio

Observations 6,933              10                    10                       500                        

Average 12.84             10.00                12.98                   12.91                     

Std Deviation 4.49               5.09                 2.96                    3.05                       

Coeff. Variation 0.35               0.51                 0.23                    0.24                       

Min 6.32               1.65                 8.90                    `7.46

Max 29.40             17.67                17.51                   `17.69

`Sample results from a single 25 Year Simulation.  
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3.5 Modelled Swaps 
Swaps form an essential component of forward revenues associated with the merchant 
Wind Portfolio, and the integrated Wind and OCGT portfolio.  The traded history of Swaps 
in the South Australian region (2008-2021) are presented in Figure 11.   

 Calendar Year Swap Strips 2008-2021 (constant 2019 dollars) 

 
Source: ASX, ABS. 

 
Historically, swaps trade at an ex ante c.5-7% premium relative to their ex post Fair Value 
in between cyclical highs (e.g. 2010-2016).  However, the surge in volatility from mid-2016 
led to a reversal with swap prices trading at $69/MWh compared to an ex post Fair Value 
of $73/MWh over the full 2010-2019 cycle.43  This is illustrated in Figure 12 (see also Table 
4). 
  

 
43 It is worth noting that using one year-ahead data, swaps did trade at a slight premium to ex post spot prices.  For the 3-
Year Accumulated Portfolio, the extent of the rebound effect and comparatively slow reversion to mean (due to pronounced 
lags in new entrant grid connections) was not predicted 3-years ahead, and this produced a negative margin over the cycle. 

0

20

40

60

80

100

120

140

Cal. Year Swap Strip 

($/MWh)

2008 2009 2010 2011 2012

2013 2014 2015 2016 2017



 
 

 
Page 20 

 3-Year Accumulated Portfolio of Swaps & Swap Payouts (2010-2019) 

 
Table 4 presents the statistical summary of Traded Swaps, the ex post Fair Value of 
Swaps, and a comparison between the historic/actual 3-Year Accumulated Portfolio (2010-
2019) of Swaps, and Modelled 3-Year Accumulated Portfolio of Swaps used in this 
research.   
 

 10-Year statistical summary of Swap Strips (2010-2019) – Actual and Modelled 

 
Source: ASX, AEMO (for Traded Swaps and Fair Value ex post) 

 
As with modelled Caps, modelled Swaps are estimated via Eq.(2) and linked to the 
stochastic spot price data set (i.e. average of ~$73/MWh) with a modest positive Swap 
premium.  Modelled Accumulated Portfolio swap prices are marginally higher than 
historic/actuals (𝜇𝑠 = $73.83 vs $69.36), with measures of volatility also marginally higher 

(𝜎𝑠 = $13 vs $12, Coefficient of Variation 0.18 vs 0.17).  Wider variations at the PoE5 and 
PoE95 level were deliberately engineered to capture a broader range of portfolio risks (i.e. 
consistent with the 100 year stochastic spot price data set). 
 

𝑝𝑠
𝑛,𝑖 = 𝜇𝑠 − (2.25 ∙ 𝜎𝑠) + [𝛼 ∙ (𝐹𝑉𝑠

𝑛−1,𝑖 + 𝐹𝑉𝑠
𝑛,𝑖) 2⁄ ] ∙ (1 + 𝛿𝑠) | 𝛿𝑠 = 𝜇𝑠 − 𝐹𝑉𝑠 , (2) 

where: 

𝑝𝑠
𝑛,𝑖 = modelled prices of Accumulated Portfolio of Calendar Year Swaps s in  

                𝑦ear n and iteration i (i = 1..500 for each year, n) 

𝜇𝑠 = long run average of the 3-Year Accumulated Portfolio of Swaps 
𝜎𝑠 = standard deviation of the 3-Year Accumulated Portfolio of Swaps 
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Avg of Traded 

Swaps

Fair Value 

Swap Ex Post

Stochastic Spot 

Prices

2010-19 

Swaps Accum. 

Modelled 

Accum. Swap 

Observations 8,186              10                   100                    10                   10                   

Average 69.46              72.36              73.15                 69.36              73.83              

Std Deviation 18.53              25.58              24.47                 12.13              13.01              

Coeff. Variation 0.27                0.35                0.33                   0.17                0.18                

PoE5 106.69            105.92            109.78               90.55              97.00              

PoE95 47.14              46.03              37.85                 59.12              53.77              
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𝛼 = estimated Swap coefficient of 0.7544  

𝐹𝑉𝑠
𝑛 = ex post Fair Value of Swaps from stochastic spot prices in  

   year n and iteration i 
𝛿𝑠 = expected long run Swap Premium (set to 1%)  

 
4. Models  

Plant valuations require integration of two sequential models, i). Unit Commitment Model, 
and ii). Stochastic DCF Valuation Model.  As (Hlouskova et al., 2005) explain when 
operational constraints are put aside, the problem at hand for the Unit Commitment Model 
is a simple one.  In each trading interval: 
 

𝑖𝑓 𝑝
𝑒

{
> 𝑀𝑅𝐶, 𝑞 = 𝑞 
< 𝑀𝑅𝐶, 𝑞 = 0,                   

       (3) 

 
where:  

𝑝𝑒 is the spot price of electricity,  
𝑀𝑅𝐶 are Marginal Running Costs,  

𝑞 is quantity produced, 
𝑞 is maximum continuous rating.   

 
Gross profit 𝜋 in each trading interval must capture the real option value of the spark 

spread, viz. turning the OCGT on and producing to physically back forward derivatives 𝑣 
sold at contract strike price 𝑝𝑐, or alternatively, turning the OCGT off and exhausting gains 

from exchange in organised spot markets45: 
 

𝑖𝑓 𝑝
𝑒

{
> 𝑀𝑅𝐶, 𝜋 = 𝑣(𝑝𝑐 − 𝑀𝑅𝐶) + (𝑞 −  𝑣) ∙ (𝑝

𝑒
− 𝑀𝑅𝐶)

< 𝑀𝑅𝐶, 𝜋 = 𝑣(𝑝𝑐 − 𝑝
𝑒
),

    (4) 

 
Of course, gas turbine unit commitment decisions are characterised by numerous 
constraints and non-convexities including start-up costs46, start-up times, ramp-rate, 
minimum stable loads, minimum run-times, planned inspections and forced outages.  
Axiomatically, in energy-only markets with a high Market Price Cap, failing to capture 
these over-values OCGT plant, hence the purpose of a Unit Commitment Model.  
 

4.1 Unit Commitment Model  
The Model simulates plant dispatch with an objective function of maximising spread 
options inherent in spot prices subject to the various constraints and non-convexities that 
characterise OCGT plant.  Essential model inputs include gas turbine technical and 
financial data (Table 1), and the 30-minute spot price data array.  Model structure is as 
follows: 
 
Let Y be the ordered set of Years. 
 
𝑛 ∈ {1. . |𝑌|} ∧ 𝑦𝑛 ∈ 𝑌,        (5) 
 
Let H be the ordered set of Half-Hour trading intervals in each year 𝑛. 

 
44 As with Eq.(1), the second term in Eq.(2) ensures there is no systematic bias towards ‘more hedging’ given 𝛿𝑠 is non-
negative.  In Eq.(2) the addition 𝛼 coefficient (i.e. at 0.75) in the estimation process ensures the overall average is 
~$73/MWh.   
45 The structure of Eq.(4) implies forward derivatives are Swaps rather than Caps.  To convert to Caps, premia needs to be 
included in each trading interval. 
46 The maintenance regime of Frame gas turbines undertaking peaking duties are driven by the number of unit starts.  
Maintenance of aeroderivative gas turbines are driven by running hours.  Both technologies use additional fuel during start-
up. 
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𝑡 ∈ {1. . |𝐻|} ∧ ℎ𝑡 ∈ 𝐻,        (6) 

 
Let �̅� be the ordered set of gas turbine units on site at their maximum continuous rating. 

 

𝑗 ∈ {1. . |�̅�|} ∧ 𝑞𝑗 ∈ �̅�,         (7) 

Let 𝐾 be the ordered set of wind turbines. 

 
𝑤 ∈ {1. . |𝐾|} ∧ 𝑘𝑤 ∈ 𝐾,        (8) 

 
Marginal Running Costs include Fuel 𝐹(𝑞𝑗

𝑡) and Variable Operations & Maintenance costs 

(𝑉𝑂𝑀𝑗
𝑡).  Fuel 𝐹(𝑞𝑗

𝑡) is non-convex because of start-up quantity 𝑎𝑗 with marginal fuel 

consumed at the plant’s heat rate ℎ𝑗.  Each coefficient is strictly non-negative. 𝑝𝑓
𝑡  is the 

price of fuel. Once operational, 𝑀𝑅𝐶𝑗
𝑡 reduces because Fuel consumed during the start-up 

sequence (𝑎𝑗) is sunk.   

 

∃ 𝑞𝑗  |𝑀𝑅𝐶𝑗
𝑡  = 𝐹 (𝑞

𝑗
𝑡) ∙ 𝑝

𝑓
𝑡 − 𝑞

𝑗
𝑡 ∙ 𝑉𝑂𝑀𝑗

𝑡   | 𝐹 (𝑞
𝑗
𝑡) = 𝑖𝑓 {

𝑞
𝑗
𝑡−1 = 0, 𝑎𝑗 + ℎ𝑗 ∙ 𝑞

𝑗
𝑡

𝑞
𝑗
𝑡−1 > 0, ℎ𝑗 ∙ 𝑞

𝑗
𝑡,

   (9) 

 

Following unit commitment, quantity produced 𝑞𝑗
𝑡 is bounded by maximum rated capacity 

𝑞𝑗 and minimum stable load 𝑞𝑗. 

 

𝑞𝐽 <  𝑞𝑗
𝑡 < 𝑞𝑗   ∀ 𝑞𝑗

𝑡 > 0,       (10) 

   

Plant is subject to planned (𝑜𝑗,𝑢
𝑡 ) and forced (𝛼𝑗,𝑢

𝑡 ) outages of one week and 6% per 

annum respectively.  Planned outages are pre-scheduled in mild seasons.   Forced 
outages (including failed starts) are random, occurring throughout the year. Available 
capacity is therefore stochastic and modelled at the station level for each trading interval: 
 

∑ 𝑞𝑗
𝑡|�̅�|

𝑗=1 | 𝑖𝑓 {
𝑟𝑎𝑛𝑑[0. .1] < 𝛼𝑗,𝑢

𝑡  ⋀ 𝑡 ≠ 𝑜𝑗,𝑢
𝑡 , 𝑞𝑗

𝑡

𝑟𝑎𝑛𝑑[0. .1] ≥ 𝛼𝑗,𝑢
𝑡 ⋁ 𝑡 =  𝑜𝑗,𝑢

𝑡 , 0,
     (11) 

 

Gas turbines are subject to a start-up sequence(𝛾𝑗) which means maximum output in the 

first trading interval following unit commitment is not feasible: 
 

𝑖𝑓 𝑝
𝑒
𝑡 > 𝑀𝑅𝐶𝑗

𝑡  ∧ 𝑞𝑗
𝑡−1 {

= 0, (𝛾𝑗 ∙ 𝑞
𝑡
) 

≠ 0, 𝑞
𝑡
,                    

     (12) 

 
Gas turbines have practical minimum economic run-times.  Unit commitment is subject to 
expected electricity prices 𝑝𝑒

𝑡 over a look-ahead period (𝑙) nominally set to two hours to 
ensure units are not started for brief periods of marginal value.47  Conversely, if already 
operational and marginal value is expected, units remain in service: 
 

 
47 The consequence of Eq.(13) is that the station will sometimes start early in anticipation of a major price spike thereby 
capturing realistic behaviour under uncertainty, and may not generate during brief spikes of low profitability thereby avoiding 
unnecessary operating hours and/or unit starts.  However, subject to Eq.(11) unit commitment will always hit major price 
spikes reflecting an assumption of high quality short-term price forecasting. 
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𝑞𝑗
𝑡 = 𝑖𝑓 {

∑
𝑝𝑒

𝑡

𝑙
𝑡+𝑙
t   ≥ MRC𝑗

𝑡 , 𝑞
𝑡

 𝑞𝑡−1 > 0 ∧  𝑝𝑒
𝑡 ≥ MRC𝑗

𝑡 , 𝑞
𝑡
  

𝑂𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒 0.

      (13) 

 
In the present exercise, key financial and operational outputs for each trading interval t in 
each year n are extracted and rolled-up into an ordered set of annual results (𝑛 = 100).  
 
Operational Results 
Operational results include plant output (𝑄𝑛), unit starts 𝑆𝑛

, fuel consumed 𝐹(𝑄𝑛) and plant 

operating hours 𝐸𝑂𝐻𝑛
.  

 

𝑄𝑛 = ∑ ∑ 𝑞𝑗
𝑡|𝐻|

𝑡=1
|𝑄|
𝑗=1 ,         (14) 

 

𝑆𝑛 = ∑ ∑ 𝑠𝑗
𝑡|𝐻|

𝑡=1
|𝑄|
𝑗=1  |       𝑖𝑓 𝑠𝑗

𝑡
= {

1, 𝑞𝑗
𝑡 > 0 𝑎𝑛𝑑 𝑞𝑗

𝑡−1 = 0

0,
    (15) 

 
𝐹(𝑄𝑛) =  𝑎𝑗 ∙ 𝑆𝑛

+ ℎ𝑗 ∙ 𝑄𝑛 ,       (16) 

 

𝐸𝑂𝐻𝑛 = ∑ ∑ 𝑒𝑜ℎ𝑗
𝑡|𝐻|

𝑡=1
|𝑄|
𝑗=1 | 𝑖𝑓 𝑞𝑗

𝑡 {
> 0, 𝑒𝑜ℎ𝑗

𝑡 = (1 ⋅ 𝑇)

0,  𝑒𝑜ℎ𝑗
𝑡 = 0,

    (17) 

 
where 𝑇 = 0.5, given 30-minute dispatch intervals. 
 
Financial Results 
OCGT Net Revenue (𝑅n) are derived from electricity spot sales (𝑟𝑚

𝑛), plus cap sales (𝑟𝑐
𝑛), 

less cap payouts (𝑟𝑐𝑝
𝑛 ), less Marginal Running Costs. Net Revenues are determined for 

each of the 100 years of results via Eq. (18)-(21).  
 

𝑟𝑚
𝑛 = ∑ ∑ [𝑞𝑗

𝑡 ∙ 𝑝
𝑒
𝑡  ∙ 𝑇],

|𝐻|
𝑡=1

|𝑄|
𝑗=1        (18) 

 

𝑟𝑐
𝑛 = ∑ ∑ [𝑣𝑐

𝑛 ∙ 𝑝
𝑐
𝑛  ∙ 𝑇],

|𝐻|
𝑡=1

|𝑄|
𝑗=1        (19) 

 

𝑟𝑐𝑝
𝑛 = ∑ [𝑚𝑎𝑥(0, 𝑝𝑒

𝑡 − 𝑝𝑠𝑡𝑟𝑖𝑘𝑒) ∙ 𝑣𝑐
𝑛 ∙  𝑇],

|𝐻|
𝑡=1      (20) 

 

𝑅𝑛 = 𝑟𝑚
𝑛 + 𝑟𝑐

𝑛 −  𝑟𝑐𝑝
𝑛 − (∑ ∑ 𝑀𝑅𝐶𝑗

𝑡|𝐻|
𝑡=1

|𝑄|
𝑗=1 ),       (21) 

 
where 
 𝑣𝑐

𝑛   = volume of caps sold (MW)  
 p𝑐

𝑛   = price of caps sold ($/MWh) 

 𝑇   = duration of each time period t (in hours) 
 𝑝𝑠𝑡𝑟𝑖𝑘𝑒   = strike price of cap contracts ($/MWh) 

 
For merchant wind plant, Net Revenues (𝑋𝑛) comprise spot market revenues (𝑥𝑚

𝑛 ) and 
difference payments from Swap sales (𝑥𝑠

𝑛): 

 

𝑥𝑚
𝑛 = ∑ ∑ [𝑞𝑗

𝑡 ∙ 𝑝
𝑒
𝑡  ∙ 𝑇],

|𝐻|
𝑡=1

|𝐾|
𝑤=1         (22) 

 

𝑥𝑠
𝑛 = ∑ ∑ [𝑣𝑠

𝑛 ∙ (𝑝
𝑠
𝑡 − 𝑝

𝑒
𝑛) ∙ 𝑇],

|𝐻|
𝑡=1

|𝐾|
𝑤=1        (23) 
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𝑋𝑛 = 𝑥𝑚
𝑛 + 𝑥𝑠

𝑛 − (∑ ∑ 𝑀𝑅𝐶𝑤
𝑡|𝐻|

𝑡=1
|𝐾|
𝑤=1 ) | 𝑀𝑅𝐶𝑤

𝑡 = (𝑞
𝑤
𝑡 ∙ 𝑉𝑂𝑀𝑤

𝑡  × 𝑇).   (24) 

 
where 
 𝑣𝑠

𝑛   = volume of swaps sold (MW)  
 𝑝𝑠

𝑛   = price of swaps sold ($/MWh) 

 
  

4.2 Stochastic DCF Valuation Model  
The basic structure of the Stochastic DCF Valuation Model aligns with a conventional 
unlevered, post-tax nominal DCF Model with 25 years duration (n =1..25), 12% expected 
equity returns and 6% debt finance (i.e. 9.3% and 2.4% real post-tax, respectively), 30% 
corporate taxes and imputed capital structure of 40/60 debt/equity.  The Model uses a 
Monte Carlo engine and sub-sampling process to randomly populate each future year n 
from the 100-year array contained in the Unit Commitment Model thus generating an 
inherently volatile price and production series that captures full business cycle data 
inherent in spot and forward energy markets (for example, see Figure 10 Cap price 
traces).  The Monte Carlo engine is iterated 500 times (i = 500) to produce 500 distinct 
plant valuations and a valuation distribution similar to (Hlouskova et al., 2005). 
 
OCGT Valuation Model 
The ith valuation of Plant Q is calculated as follows:  
 

𝑉𝑄
𝑖 = 𝑃𝑉𝑄

𝑖 ∑ [𝑟𝑚
𝑛,𝑖 + 𝑟𝑐

𝑛,𝑖 − 𝑟𝑐𝑝
𝑛,𝑖 − (∑ ∑ 𝑀𝑅𝐶𝑗

𝑡,𝑖|𝐻|
𝑡=1

|𝑄|
𝑗=1 ) − 𝐹𝐶𝑄

𝑛 − 𝜏𝑛,𝑖] ,25
𝑛=1   (25) 

 
where 

𝑉𝑄
𝑖  = (Present) Value of OCGT (ith iteration) 

𝐹𝐶𝑄
𝑛  = Fixed Costs (i.e. Fixed Operations & Maintenance, Insurances etc) 

𝜏𝑛,𝑖 = Cash taxes payable 
 

The mid-point valuation of 500 iterations is therefore: 
 

𝑉𝑄 = 𝑃𝑉𝑄 ∑ (∑ [𝑟𝑚
𝑛,𝑖 + 𝑟𝑐

𝑛,𝑖 − 𝑟𝑐𝑝
𝑛,𝑖 − (∑ ∑ 𝑀𝑅𝐶𝑗

𝑡,𝑖|𝐻|
𝑡=1

|𝑄|
𝑗=1 ) − 𝐹𝐶𝑄

𝑛 − 𝜏𝑛,𝑖]25
𝑛=1 )500

𝑖=1 𝑖⁄ , (26) 

 

Merchant Wind Valuation Model 
The ith valuation of Portfolio K is calculated as follows:  
 

𝑉𝐾
𝑖 = 𝑃𝑉𝐾

𝑖 ∑ [𝑥𝑚
𝑛,𝑖 + 𝑥𝑠

𝑛,𝑖 − (∑ ∑ 𝑀𝑅𝐶𝑤
𝑡,𝑖|𝐻|

𝑡=1
|𝐾|
𝑤=1 ) − 𝐹𝐶𝐾

𝑛 − 𝜏𝑛,𝑖]25
𝑛=1 ,   (27) 

 
where 

𝑃𝑉𝐾
𝑖  = Present Value of Wind plant (ith iteration) 

𝐹𝐶𝐾
𝑛  = Wind plant Fixed Costs 

 
The mid-point valuation follows the same procedure as Eq.(26). 
 
Merchant Wind & Gas Turbine Valuation Model - Optimisation 
Integration of merchant wind and OCGT plant requires stand-alone hedge portfolios to be 
re-organised.  Specifically, optimal swap levels are increased to average portfolio output, 
with Cap derivatives reduced to enable the OCGT plant to form a real option against 
Swaps in light of intermittent output.  The volume and structure of portfolio derivatives 𝐷𝑛 
is therefore: 
 

𝐷𝑛 = �̀�𝑠 + �̀�c | �̀�𝑠 ≅ 𝑒(𝑃𝑜𝑟𝑡𝑓𝑜𝑙𝑖𝑜 𝐴𝐶𝐹) ∀ 𝑛 ∧ �̀�c = max(0, 𝑣𝑐 − 𝑣𝑠) ∀ 𝑛, (28) 
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where ex ante, expected average portfolio output is ~80MW.48 
 

The ith valuation of the Portfolio therefore is: 
 

𝑉𝐾,𝑊
𝑖 = 𝑃𝑉𝐾,𝑊

𝑖 ∑ [(𝑟𝑚
𝑛,𝑖 + 𝑥𝑚

𝑛,𝑖) + (�̀�𝑠
𝑛,𝑖 + �̀�𝑐

𝑛,𝑖 − �̀�𝑐𝑝
𝑛,𝑖

) − [(∑ ∑ 𝑀𝑅𝐶𝑗
𝑡,𝑖|𝐻|

𝑡=1
|𝑄|
𝑗=1 ) +25

𝑛=1

(∑ ∑ 𝑀𝑅𝐶𝑤
𝑡,𝑖|𝐻|

𝑡=1
|𝐾|
𝑤=1 )] − ∑ 𝐹𝐶𝑄,𝐾

𝑛 − 𝜏𝑛,𝑖].      (29) 

 
The mid-point valuation follows the same procedure as Eq.(26). 
 
5. Modelling Results 

A rising view in energy economics and policy literature is OCGT plant are increasingly 
unprofitable due to VRE merit order effects and lower run times, implying capacity markets 
or strategic reserves may be essential (Hach and Spinler, 2016; Höschle et al., 2017; 
Bublitz et al., 2019; Milstein and Tishler, 2019).  But recall from Section 2: 
 

1. energy-only markets have always been ‘tough neighbourhoods’ from an 
investment commitment perspective, especially peaking plant (Peluchon, 2003; 
Bidwell and Henney, 2004; Finon, 2008); 
  

2. vertical integration has historically provided a means by which firms could navigate 
missing money and forward market imperfections (Simshauser, 2010; Simshauser, 
Tian and Whish-Wilson, 2015; Newbery, 2016); 
 

3. merit order effects have multiple dimensions over multiple timeframes (Hirth, 2013; 
Hirth, Ueckerdt and Edenhofer, 2016) and eventually produce near-perfect market 
conditions for OCGT plant entry; and  
 

4. merchant stochastic VRE plant are analogous to, or a mirror image of, stochastic 
loads. Consequently, integration of merchant VRE plant with OCGT plant should 
also, in theory, present transactional gains.   

 
Testing this concept requires three sequential valuations i). merchant OCGT plant, ii). 
merchant Wind Portfolio, and iii). an integrated portfolio comprising i) and ii).  The marginal 
value of the integrated portfolio result can be quickly derived by comparison with the Sum-
of-the-Parts, i.e. iii). vs. (i) + (ii). 
 

5.1 OCGT Valuation 
Recall the OCGT plant has an overnight capital cost of ~$1050/kW or $102.3m.49  
Applying the Section 3 data and Section 4 modelling sequence produces the OCGT plant 
valuation distribution outlined in Table 5 and Figure 13.   
 

 
48 The level of hedging would ideally be optimised for expected changes in quarterly conditions rather than limited to pre-set 
annual hedge levels over a 25 year period.  However, this simplifying assumption reduces calculations across the 25 years x 
500 iterations considerably. 
49 That is, 3 x 32.5MW x $1050/kW = $102.3 million or ~US$69m. 
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 OCGT valuation results  

 
 

The midpoint valuation is $88.6 million with PoE5 and PoE95 valuations of $105.4m and 

$71.6, respectively.  PoE50 Annual Cash Flows (i.e. ∑ ∑ = 1250025
𝑛=1 𝑠𝑖𝑚𝑢𝑙𝑎𝑡𝑒𝑑 𝑦𝑒𝑎𝑟𝑠500

𝑖=1 ) is 

$9.8 million per annum, and the PoE95 result is $4.3 million.  Even after accounting for a 
portfolio of $300 Cap derivatives, annual cash flow variations demonstrate why raising 
debt against a stand-alone OCGT plant is challenging.    
 
OCGT production duties are also summarised in Table 5 – average ACF is 7.9% or 692 
operating hours (233 starts per unit) with significant inter-year variation.  During cyclical 
market highs, OCGT duties surge to 24.5% ACF, and fall to just 75 Operating Hours (0.9% 
ACF) during market lows.    
 
Of critical importance is the mid-point OCGT plant valuation ($88.6 million) relative to entry 
costs of $102.3 million – a shortfall of -$13.7m (-13.4%).50  Given the nature of DCF 
Models, stand-alone investment commitment in new OCGT plant is more likely to occur 
during cyclical market highs.   

 OCGT Valuation Distribution (500 iterations)  

 
 
  

 
50 This result is to be expected – recall plant entry costs are ~$14/MWh and modelled Caps are ~$13/MWh over the cycle. 

3 x 30MW OCGT Plant Valuation ACF Unit Starts Op. Hours

($m) (%) (#) (Hrs) 

Plant Valuation (Avg of 500 iterations) 88.6                7.9                  233                 692                 

PoE5 Valuation 105.4              10.4                824                 915                 

PoE95 Valuation 71.6                5.7                  107                 497                 

Minimum Valuation` 57.7                0.9                  35                   75                   

Maximum Valuation` 117.3              24.5                912                 2,147              

Avg Annual Cash Flow (500 iterations) 9.8                  7.9                  233                 692                 

PoE95 Cash Flow (500 iterations) 4.3                  5.7                  107                 497                 

 ̀Min and Max Annual Capacity Factor, Unit Starts and Operating Hour results are for a single year.  Valuations relate to 25 years.
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5.2 Merchant Wind Portfolio Valuation 
To the best of my knowledge, merchant VRE plant in energy-only markets is a new asset 
class.  The NEMs ~30 incumbent and new entrant exhibits emerging over 2017-2019 are 
therefore “trail-blazing”.  Regardless of how VRE become merchant, participation in 
forward derivative markets will become important from a financial management 
perspective vis-à-vis raising and servicing debt.  Figure 15 subsequently reveals why this 
is the case.   
 
Introducing forward derivatives into a VRE portfolio lowers future price risk – a crucial 
financial management objective – but simultaneously amplifies intermittency/quantity risk.   
Axiomatically, as Baseload Swap levels are increased, confidence limits around asset-
backed generation falls.  The risk here is obvious.  If the Wind Portfolio enters into 100MW 
of Swaps, output falls to zero and spot prices go to VoLL ($14,700/MWh), derivative losses 
equal $1.47 million per hour. 
 
But this does not mean merchant VRE cannot, or should not, enter into forward Swap 
commitments.  In reality, a 1MW Baseload Swap can be asset-backed by a 250MW wind 
portfolio with confidence because the Dispatched-Weighted Price of the 1st (priority-
allocated) MW of production invariably has a very strong correlation to annual average 
spot prices for which Swaps are settled against.  Furthermore, across a typical reporting 
period, collective long spot exposures will offset some minimum quantity of short exposure 
periods.  Transient imbalances (i.e. short & long positions) are, after all, fungible within a 
reporting period.  The task is to assess the relative effectiveness of marginal MWs of 
Baseload Swaps against wind portfolio output.  
 
Figure 14 illustrates this relationship by presenting Dispatch-Weighted Prices for wind 
production.  The two solid black lines highlight upper- and lower-bound simulations, with 
the former commencing from 99% of the average annual spot prices, continuously 
deteriorating to 93%.  The lower-bound simulation commences at 97% and deteriorates 
82%.  These are average Dispatch-Weighted Price results.  The dashed line-series 
illustrates marginal Dispatch-Weighted Price for the upper- and lower-bound production 
simulations.  What this demonstrates is asset-backed performance of hedge commitments 
begins to deteriorate as hedge levels are raised, absent ‘firming’ via financial or real 
options.   
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 Asset-Backed Production by Wind  -  

Average & Marginal Dispatch-Weighted Prices vs Hedge Commitment Levels (MW) 

 
 

Figure 15, perhaps the most important result in this article, illustrates how the 250MW wind 
portfolio performs against varying levels of Swaps by comparing expected earnings 
(PoE50) with 1-in-20 year downside earnings (PoE95).  Specifically, the PoE50 and 
PoE95 Annual Cash Flows from 500 iterations, for 25 years, for each of 25 forward 
hedging set-points (0-120MW in 5MW increments) are measured in Figure 15, 
representing the results of 312,500 simulated years in aggregate.  Hedge levels are 
measured on the x-axis, and y-axis measures Cash Flows.   
 
The relationship between PoE50 and PoE95 Cash Flows, which can be loosely defined as 
a modified Sharpe Ratio51, is an important one as it provides an indication of the level of 
risk (PoE50 – PoE95), given expected returns (PoE50 Cash Flows) of the underlying 
operating asset: 
  

 
51 Of course, the Sharpe Ratio measures the risk-adjusted returns of a portfolio [𝑒(𝑅𝑝) − 𝑅𝑓 𝜎𝑝⁄ ]. 
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 250MW (31.2% ACF) Merchant Wind Portfolio with Forward Swaps  

 
PoE50 Cash Flows are largely constant throughout the 0-120MW trading range, implying 
Swaps are priced at Fair Value over the business cycle.  But notice the material 
improvement in downside/PoE95 Cash Flows (and modified Sharpe Ratio) as Swaps 
approach 75MW, then deteriorating sharply thereafter.     
 
That modelling reveals an optimal hedge level of ~75MW is not entirely surprising.  A 
250MW Wind Portfolio at 32.1% ACF produces average output of ~78MW (i.e. 250MW x 
32.1% = 78MW).  Fixing the price of expected annual output should reduce earnings 
volatility provided Swaps are fairly priced and asset-backed (noting short/long positions 
are fungible within a reporting period).   
 
The incumbent Merchant Wind Portfolio was valued in the Stochastic DCF Valuation 
Model with a hedge setpoint comprising 75MW of Swaps and iterated 500 times, 
producing an (ex-certificate/ex-carbon price) valuation of $319.052 as outlined in Table 6 
and Figure 16.  
 

 Wind Portfolio Valuation 

 
 
  

 
52 Recall the wind portfolio is an incumbent.  While not the purpose of this article, the depreciated valuation as an incumbent 
is ~$450 million and the combined value of electricity sales (per Table 6) and renewable certificate sales (per footnote 38) 
exceeds this amount. 
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250MW Wind Portfolio Valuation ACF 

($ Million) (%) 

Plant Valuation (Avg of 500 iterations) 319.0              31.1                

PoE5 Valuation 348.1              33.9                

PoE95 Valuation 288.5              28.2                

Minimum Valuation` 268.9              28.2                

Maximum Valuation` 366.5              33.9                

Avg Annual Cash Flow (500 iterations) 34.0                31.1                

PoE95 Cash Flow (500 iterations) 21.0                28.2                

 ̀Min and Max Annual Capacity Factor results are for a single year.  Valuations relate to 25 years.
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 Wind Valuation Distribution 

 

However, a cautionary note and shortcoming associated with Figure 15: 
 

• as hedge levels increase, upside earnings are truncated – a PoE5 Cash Flow 
series would be a mirror image of PoE95; and 
 

• the risk of critical ‘intra-period liquidity events’ and black swan events (i.e. >PoE95) 
are not evident through annual modelling results.  In a (credible) scenario where 
75MW of swaps with average strike price of (say) $65/MWh due to moderate 
market conditions encounter a supply-side shock associated with stochastic spot 
price Year 14 (n=14 of 100), derivative losses of $3.4m occur in a single week53 
and cumulative revenues for the 3rd Quarter fall to zero before accounting for fixed, 
variable and financing costs.  Such a scenario would result in financial distress.  
However, this also represents the motivation for integration with OCGT plant – 
while intra-year results are not presented, modelled results reveal integration 
completely neutralises 3rd Quarter losses in Year 14. 

 
5.3 Integrated Portfolio of 250MW Wind & 90MW OCGT 

Integrating OCGT and Wind requires forward commitments to be reorganised.  Recall the 
OCGT has 80MW of Caps, and Wind has 75MW of Swaps.  In the integrated case, Swaps 
are raised to average portfolio output of ~80MW and Caps are reduced to 30MW in order 
to allow the OCGT to physically back marginal Swaps – thus neutralising intra-period 
liquidity events.  Comparative valuation results are presented in Table 7.  

 
53 Specifically, settlement week 30 of 52. 
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 Integrated Portfolio Valuation 

 
 
Columns A and B in Table 7 reproduce Tables 5-6 for ease of comparison. Column C is a 
simple Sum-of-the-Parts (i.e. Columns A + B).  Column D presents the integrated Wind 
and OCGT Portfolio.  Column E isolates Portfolio Effects (i.e.  Column D – C). 
 
Note the Sum-of-the-Parts valuation is $407.6 million whereas the integrated portfolio 
valuation is $432.0 million.  The Portfolio Effect is therefore +$24.4 million.  This is a 
critical finding.  When Portfolio Effects ($24.4) are added to OCGT valuation ($88.6), 
economics tip in favour of OCGT investment commitment with a combined value of $113.0 
million, ~$10 million above entry costs. 
 

Note Wind+OCGT Portfolio results (Column D) exceed Sum-of-the-Parts (Column C) in 
every metric.  Portfolio valuations are higher, and crucially, PoE50 and PoE95 Cash Flows 
improve materially.  The valuation distribution is presented in Figure 17. 
 

 Integrated Portfolio Valuation Distribution 

 
 

6. Policy implications and concluding remarks 

The historically high cost of renewables and generalised merit order effects meant 
continuity of VRE entry had been reliant on Australia’s 20% Renewable Portfolio Standard 
and other policy initiatives.  As latter-stage merit order effects played out (i.e. rebound 
effects) and entry costs plunged, merchant and semi-merchant renewables emerged as an 
asset class, augmented by older incumbent VRE plants as legacy PPAs expired.  In 
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aggregate, the merchant VRE fleet forms a small but meaningful (15-20%) component of 
the NEMs total VRE plant stock.   
 
For debt to be structured and allocated on commercial terms to merchant VRE, some 
minimum level of forward hedging is desirable.  The benefits of doing so have not been 
quantified here, and so this represents an area for futher research.  But the analysis in 
Section 5 demonstrated ‘hedging to average’ wind output can be financially prudent, even 
with a diminishing Dispatch-Weighted Price running at non-trivial discounts to baseload 
prices.  Risk-adjusted expected earnings (PoE50 relative to PoE95 Cash Flows) improved 
markedly.   
 
It was noted annual results mask intra-period liquidity risk.  This is not critical when 
integrated with OCGT plant as it is capable of neutralising intra-period events.  This is, of 
course, the basis of vertical integration with retail load.   
 
On a stand-alone basis, OCGT investment was marginally sub-economic.  When 
combined with merchant Wind, Portfolio Effects on underlying valuations were material, 
tipping the economics in favour of investment commitment.  Risk-adjusted returns (i.e. 
PoE50 and PoE95 Cash Flows) by comparison to Sum-of-the-Parts were also significantly 
tighter, making the integrated asset portfolio more bankable.  Whether these results can 
be generalised to other jurisdictions is contingent on the relative pattern of VRE output, 
and critically, the relationship between VRE Dispatch-Weighted Prices and baseload 
prices.  The gap between the two is essential to the economics of peaking plant 
investment. 
 
With merchant VRE, investment error and commodity price risks are allocated to investors.  
And there are, evidently, strong portfolio incentives to invest in dispatchable OCGT plant.  
As such, this emerging asset class appears to be a helpful development vis-à-vis 
environmental objectives and Resource Adequacy.  It would seem Resource Adequacy in 
energy-only markets can be maintained through two forms of portfolio integration, i). the 
historically dominant vertical integration of OCGT with retail supply, and now ii). OCGT 
with merchant VRE.   
 
For policymakers, these results are important.  While energy-only markets are ‘tough 
neighbourhoods’ from an investment perspective, Section 5 analysis appears to contradict 
the notion that energy-only markets are increasingly incompatible with delivering 
environmental objectives and Resource Adequacy.  The NEM’s South Australian region 
has delivered one of the highest VRE market shares in the world (>50%), and the broader 
NEM has met the Reliability Criteria under a wide array of economic and technical 
conditions with very few exceptions over the past 20 years.  It is to be noted system 
security events are becoming increasingly problematic with high VRE – but this relates to 
the nature and design of Frequency Control Ancillary Service markets and other system 
security-related issues54, not matters of environmental policy or Resource Adequacy vis-à-
vis the energy only market design.  
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