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It is anticipated that Australia’s National Electricity Market (NEM) will be almost 
entirely dependent upon variable renewable energy (VRE) production in the 
coming decades. The Australian Energy Market Operator (AEMO) and other 
researchers have provided detailed forecasts of the storage and firming required 
to ensure a secure electricity system that is supplied exclusively by VRE. 
However, these forecasts utilise existing VRE datasets which are often limited by 
historical observation given the relatively recent deployment of renewables in the 
Australian electricity system. This article seeks to significantly expand this analysis 
by building a VRE output forecast model that utilises 42 years of real-world 
weather data. This ‘backcasting’ approach allows us to far more accurately 
determine firming and storage requirements to overcome real-world instantaneous 
and medium-term production risk in a system supplied entirely by VRE resources. 
Our results can be used by policy makers to better plan the just transition to a 
renewable energy-based electricity system.  
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1. Introduction 

Through the United Nations Framework Convention on Climate Change (UNFCCC) process, 
Australia has committed to reducing its greenhouse gas emissions in a manner that limits 
anthropogenic climate change to no more than 2 degrees Celsius with an aspiration to 
achieve no more than 1.5 degrees. Meinshausen et al., 2022 estimate that this commitment 
will require Australian emission reductions of ~50 to ~75% by 2030. Given that the electricity 
sector is currently the source of around one-third of Australia’s annual emissions due to its 
heavy reliance upon coal, it is highly likely that addressing climate change will involve 
complete decarbonisation of the Australian electricity system by the early 2030s (see 
Gilmore et al, 2022).   

Australian policy makers have determined that decarbonisation of the electricity sector will 
be achieved through the utilisation of renewable energy. State governments have 
established significant policies to support investment in onshore and offshore renewable 
energy and associated transmission infrastructure (Nelson et al., 2022). The Australian 
Market Operator (AEMO) produces a blueprint for this sector transition known as the 
Integrated System Plan (ISP). Through detailed system modelling, the ISP projects the 
required energy storage (i.e. batteries and pumped hydro) and firming (i.e. peaking plant) 
required to give effect to a system dependent upon variable solar and wind resources.   

A critical and underexplored policy issue in the Australian context is the potential for ‘energy 
droughts’ (often referred to as “dunkelflaute” periods) to exhaust energy storage and leave 
the electricity system vulnerable to supply interruptions. While the market operator and other 
researchers have used existing solar and wind output traces to optimise the projected 
storage and firming technologies to address these ‘energy droughts’, the relatively recent 
emergence of solar and wind technologies may mean that data sets are simply not long 
dated enough to provide sufficient guidance for policy makers.  

Data on potential solar and wind output does exist though in the form of longer-term weather 
datasets. With appropriate analysis, it is possible to utilise these long-term weather datasets 
to simulate how much energy would have been captured historically if solar and wind energy 
production technologies had been in place. In this paper, we utilise this method to provide a 
much longer dated dataset of historical wind and solar output across Australia. This analysis 
provides us with significant insights into VRE output variability and in particular, answers to 
two important questions for policy makers: 

- Instantaneous production risk and the optimal level of firming capacity – what is the 
probability distribution of the lowest VRE output expected at any time? When 
correlated with projected electricity demand and coupled with an appropriate 
reliability standard, we can determine the capacity (in MW) of firming capacity 
required. For example, could there be a scenario where there is zero instantaneous 
wind and solar production and all energy production will need to be sourced from 
batteries, pumped hydro or other firming technologies? 
 

- The potential for VRE ‘droughts’ and implications for energy storage - what is the 
probability distribution of total energy provided over a given interval (e.g., across an 
hour, a day, or a week)? In a 100% VRE system, understanding the extent of energy 
‘droughts’ and ‘floods’ determines the quantity of storage (in MWh) required, and 
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over what timeframe– sufficient to smooth out the available energy across an hour, 
day, week, season, etc.  

Importantly, it is the statistical ‘long-tail’ of low production periods that will determine firming 
requirements. Utilising longer dated datasets to produce more detailed analysis of energy 
flows in a future VRE based electricity system will allow policy makers to better understand 
the trade-off between cost and reliability. The purpose of this article is to significantly expand 
policy makers understanding of these issues by utilising this hitherto underexplored 
technique in the Australian context. Our review of the literature is presented in Section 2. 
The methodology and data used in our analysis is outlined in Section 3. Section 4 
catalogues our results and Section 5 provides detailed discussion and our policy 
recommendations and concluding remarks.   

2. Literature Review 

Understanding the potential variability of VRE resource requires a long time series, statistical 
models, or both. The simplest option is to use historical production data from actual projects. 
However, such data only goes back as far as projects exist and will not necessarily reflect 
future geographical distributions or diversity of projects. It can also be difficult to separate1 
the underlying weather resource from changes in technology (e.g., panel or turbine 
efficiency), network constraints and grid outages (Staffell and Green, 2014). The second 
option is collating historical ground-based weather station observations (for example, 
(Katsigiannis and Stavrakakis, 2014; Sinden, 2007)). Importantly, this can provide a 
timeseries for as long as measurements were taken. Limitations of this approach can include 
data not typically being available at locations representative of wind farms and scaling the 
observations to windfarm hub height. 

The third option is a combination of the two approaches through reanalysis - backcasting 
historical weather conditions by calibrating atmospherical weather models to observed 
historical observations (Ebisuzaki and Zhang, 2014). Data sources include measurements 
from satellites, ground-based weather stations, and other sources. The end goal is a 
consistent weather dataset with much higher spatial resolution than can be obtained from 
only physical historical measurements. This makes reanalyses ideal for assessing the 
variability around renewable energy resources over long time periods. One such dataset is 
the NASA Modern-Era Retrospective Analysis for Research and Applications, Version 2 
(MERRA-2) reanalysis (Gelaro et al., 2017) which provides global coverage at 0.5 x 0.625 
degree resolution (roughly 50 km x 50 km in Australia) from 1980 to the present. 

Across several key papers, Staffell, Green,and Pfenningerhave developed methods for 
simulating wind and solar traces based on the MERRA-2 dataset. In two of these papers 
(Staffell and Green, 2014; Staffell and Pfenninger, 2016) the authors developed a Virtual 
Wind Farm model benchmarked against existing wind farms. Wind speed data was extracted 
from the MERRA-2 data set and extrapolated to hub height and run through a simulated 

 

1 Transmission constraints, grid and plant outages, maintenance, and commissioning delays are all 
important issues, but can and should be considered separately to the underlying resource drought. 
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power curve, with appropriate adjustments for wind variability across a farm2. They also 
developed a procedure for adjusting biases in the MERRA-2 dataset for each country to 
match metered generation data, which allows for some adjustment to reflect mesoscale 
trends. Pfenninger and Staffell (2016) used a similar approach for solar power, including 
correcting biases in solar data by calibrating to 1000 solar sites across Europe. This allowed 
for insightful analysis of the variability in solar output across hours and days.  

This approach has been used in other works. McPherson et al., (2017) developed a similar 
tool for forecasting wind and solar generation, and then used these traces to simulate future 
grid scenarios for Canada (McPherson and Karney, 2017). Ofgem, (2012) undertook an 
assessment of capacity adequacy in the UK including simulation of UK wind farms using the 
original MERRA dataset. They present backcast simulations of wind production against 
metered data, concluding accuracy was high enough for the purpose of statistical wind 
distributions using 32 years of simulated wind data. Wind power has been modelled in 
Sweden by Olauson and Bergkvist (2016), who developed country-based time series of wind 
power output across Europe. They found correlations between projects decline exponentially 
with distance and are highest for long-term (greater than four months) trends and lowest for 
step change and short-term features.  

Reanalysis data sets are increasingly being used to investigate long-term firming 
requirements and the ability to deliver 100% renewable systems. Tong et al., (2021) used 
the MERRA-2 dataset to simulate high VRE systems across 42 countries, identifying 
resource adequacy with different combinations and levels of renewable energy resource. 
Poletti and Staffell (2021) utilised MERRA-2 data to demonstrate resource adequacy of a 
100% renewable electricity New Zealand grid with 7-day storage. 

William et al. (2019) used a long-term reanalysis weather dataset to model 100% 
renewables in Europe by 2050, based on 37 years of reference data. They found that similar 
levels of reliability to today could be achieved, but would require significant transmission 
augmentation to benefit from geographic resource diversity. Ohlendorf and Schill (2020) 
used MERRA-2 data to evaluate low-wind-power events, and found a one-in-ten year event 
would be wind operating at less than 10% average capacity factor for nearly eight days. 

Despite global usage, application and verification of MERRA, MERRA-2, or other reanalysis 
datasets in Australia have been limited. Hallgren et al. (2014) developed a wind map for 
Australia, based on MERRA wind speeds, but did not seek to simulate or benchmark 
existing wind farms. Wang et al. (2018) used MERRA-2 data for some traces, but only for a 
single reference year. Prasad et al. (2017) investigated the correlation of wind and solar 
resources across Australia, and found resources could be complementary, particularly if 

 

2 Care must be taken to use an appropriate power curve. A manufacturer’s turbine curve may 
appropriate for a single wind turbine, but does not adequately describe the output of a farm with 
multiple turbines once spatial and temporal variation in wind speeds is taken into account. Nørgaard 
and Holttinen (2004) presented a possible solution where a single-turbine power curve is convoluted 
with a probability distribution (normal or otherwise) of wind speeds. They found this to be highly 
effective, and it has been widely adopted, including in the Python windpowerlib library used in this 
article.  
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separated by 500km or more. This paper therefore provides a calibration and validation of 
the MERRA-2 data to Australian conditions. 

One potential risk that cannot be captured through historical reanalysis is that historical 
patterns will change in more extreme climate change scenarios. Wild et al., (2015) analysed 
projections from 39 climate models from the Coupled Model Intercomparison Project Phase 
5 (CMIP5), and observed material decreases (over 1%/decade) in solar photovoltaic (PV) 
output from 2006 to 2049 in higher heating scenarios. Long-term wind studies are more 
mixed, with shifting patterns of wind power (Santos et al., 2015).  

3. Methodology and Data 

3.1 MERRA-2 data 

MERRA-2 data was downloaded for the period 1st Jan 1980 to 31st December 2021 from the 
NASA Goddard Earth Sciences Data and Information Services Centre. Hourly, time-
averaged data was extracted for each grid point (Figure 1) and compiled into a local 
database suitable for extracting specific sites. 

Figure 1 MERRA-2 grid points for east coast of Australia3 

 

 

3 Map figure from Open Street Maps 
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3.2 Wind modelling 

Wind production was modelled using the open source Python package windpowerlib (Haas 
et al., 2021), which implements useful algorithms for extrapolating from the MERRA-2 data 
including a logarithmic scaling of wind speeds from measured levels (2m, 10m, and 80m) to 
hub height, spatial smoothing of wind speeds across a farm following the approach of Staffell 
and Pfenninger (2016), and a model of wake losses by Kohler et al. (2010). Details were 
compiled for each existing wind farm in the NEM. Where data was available, the 
manufacturer reported power curve (mapping of wind speed to MW output of the turbine) of 
the wind farm was used; otherwise, the power curve of a similar sized turbine was used. 

The raw MERRA-2 wind data produced high quality outputs at the regional (aggregate) level, 
with both qualitative (correlations, generation-duration curve trends, etc) and quantitative 
(capacity factors) features aligning well with historical data. However, the projected capacity 
factor for any individual wind projects was sometimes much higher or much lower than 
observed. Raw wind speeds 𝑤𝑤 for each site were scaled and offset through the general form 

𝑤𝑤′ = 𝛼𝛼 ⋅ 𝑤𝑤 + 𝛽𝛽 

where suitable 𝛼𝛼 and 𝛽𝛽 parameters were determined for each individual wind farm to best 
match the historical generation-duration curve. 𝛽𝛽 was iteratively adjusted until the target 
capacity factor was achieved, then 𝛼𝛼 adjusted to better match the P20 and P80 (20% and 
80% probability of exceedance) production4, and the process iterated to best match. As part 
of the calibration and benchmarking, obvious periods of network or economic constraints 
and forced or planned outages were corrected for but an exhaustive search of all periods 
was not undertaken. A 3% derating to all individual backcast traces was assumed to capture 
the average impact of lost production. This process was undertaken for three calendar years 
(Cal19 to Cal21) and was reasonably consistent between years. To avoid overfitting, the 
benchmarked 𝛼𝛼 and 𝛽𝛽 were averaged across the three years for each site and applied to all 
years. This produced high quality projections for each site (for example, Figure 2 showing 
the Taralga wind farm), which was used for the Existing Fleet backcast. 

 

4 For example, if the 20% POE backcast was higher than actuals, 𝛼𝛼 would be lowered (reducing high 
demand periods more than low) and then 𝛽𝛽 increased to return to the same capacity factor.  
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Figure 2 Example of backcast wind output for one wind farm (Taralga, July-August 2020) 

 
To select appropriate 𝛼𝛼 and 𝛽𝛽 for new sites in a future NEM mainland fleet, a regional 
calibration factor for each of the mainland states (combining Queensland with New South 
Wales, due to lack of data in Queensland) was determined by simulating all sites for which 
historical data was available and targeting the regional generation-duration curve. In general, 
relatively little scaling was required at the regional level (with wind traces scaled by up to 
12% and adjusted by between -0.5m/s and 0.08m/s). This is consistent with the expectation 
that local factors can either positively or negatively impact the MERRA-2 wind traces, and 
are averaged out across enough sites. In South Australia, subsequent simulation of wind 
farms with modern turbines yielded very high capacity factors (>50%) which does not match 
recent experience and a 5% wind speed reduction was manually applied. Finally, a further 
5% wind speed reduction was applied to all sites to reflect a likely reduction in the availability 
of high-quality development sites with significant new build.  

When applied to the existing fleet, this approach delivered a close match on daily, weekly 
and hourly resolutions as shown by the figures below. Critically, performance during low 
wind conditions matched well over various timescales, which is important for analysis of 
potential VRE droughts.  
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Figure 3 NEM Wind average daily production, historical and backcast for Cal19-Cal21 

 

Figure 4 NEM Wind average weekly production, historical and backcast for Cal205 

 

 

 

5 Cal20 shown instead of Cal21 due to transmission constraints in the historical dataset in Cal21 
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Figure 5 NEM Wind production duration curve, historical and backcast using regional calibration 
factors for Cal206 

 

Figure 6 NEM Wind example hourly production, historical and backcast (July-August 2020) 

 

 

6 Cal20 shown instead of Cal21 due to transmission constraints in the historical dataset in Cal21 
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3.3 Large-scale solar 

The open source package pvlib (Holmgren et al., 2018) was used to simulate large-scale 
solar projects. The MERRA-2 dataset provides Global Horizonal Insolation (GHI; the total 
solar radiation incident on a horizontal plane) for each location but not Direct Normal 
Insolation (DNI; solar radiation on a plane directly facing the sun) which is required for 
simulating solar systems with tracking. Many methods have been proposed to estimate the 
DNI from observed GHI, the location of the sun based on physics models, and an 
atmospheric model; we used the DISC algorithm (Maxwell, 1987), implemented by pvlib7.   

For benchmarking against existing projects, both transmission and economic constraints 
occurred regularly for solar PV. These periods were filtered where possible through 
constraining the simulations to historical maximum MW constraints8, or excluding sites with 
significant curtailment. As with wind projects, a 3% average derating was applied to all 
traces to capture forced and unforced outages. 

Figure 7 and Figure 8 show the historical and backcast output of 15 solar projects totalling 
1053 MW across the New South Wales, Victoria, and South Australian regions of Australia 
over calendar year 2021. The MERRA-2 dataset produces very high correlation at a daily 
(correlation factor=0.959) and weekly (correlation factor=0.980) averaged resolution, 
suggesting this is a suitable dataset for understanding the role of droughts and long-duration 
storage9.  

 

 

7 The pvlib implementation appears to assume all input values refer to instantaneous measurements . 
Due to the use of average hourly MERA-2 data, providing inputs “on the hour” resulted in unrealistic 
outputs if input average GHI was higher than the theoretical instantaneous clear-sky GHI. Effective 
results were obtained for the Australian east coast by casting inputs as being measured at 40 minutes 
past the hour. 

8 Any daytime periods with historical production less than 5% of nameplate were assumed to be 
curtailed periods, and were set to the same level in the backcast. 

9 Correlation at hourly resolution is also very high (0.981) but this metric is confounded by the intrinsic 
diurnal nature of solar. 
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Figure 7 NSW Solar daily average MW, actuals vs backcast for Cal21 

 

Figure 8 NSW Solar weekly average MW, actuals and backcast for Cal21 

 

3.4 Rooftop PV 

Rooftop PV statistics including the installed capacity by system size, number of systems by 
system size, and number of dwellings were downloaded from the Australian PV Institute 
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(APVI) Solar Map site10 for each State Electoral Division (SED) geographical region. No 
comprehensive data was available as to the distribution of system configurations, so 
assumptions were tested and refined against subsequent benchmarking. Simulations for 
each location were distributed between North, East, and West facing, set at an angle of 20 
degrees consistent with roof pitches in Australia of 15 to 22.5 degrees. AC and DC 
capacities were matched.  

Given the resolution of the MERRA-2 grid points, 116 distinct locations were simulated 
across 326 SEDs. Regional rooftop PV backcasts were calibrated against regional half-
hourly rooftop PV production estimates provided by AEMO. The historically installed rooftop 
PV capacity at monthly resolution was used to scale the simulated historical rooftop PV 
traces (the share of dwellings with rooftop PV by SED was held constant at December 2021 
levels).  Based on an initial comparison, the simulated rooftop PV traces were scaled by 
0.728 to 0.755 (depending on the region) to match the historically reported annual capacity 
factor, which captures the lower performance of distributed rooftop systems compared to 
well-maintained utility scale projects. It was also observed that particularly low generation 
days (less than 65-80% of expected clear sky conditions output) were overestimated in the 
backcast, and so a further 15-30% derating was applied to all output in that region on those 
days. Figure 9 shows the daily and diurnal average output of the MERRA-2 model (red) 
versus the AEMO reported data (black). The hourly generation-duration curve and monthly 
average generation curves also matched closely.  

Figure 9 Rooftop PV backcast of average daily mean MW (left) and average diurnal mean MW (right) 
(2019-2021) 

 

PV capacity growth is likely to occur through uptake by new dwellings and larger systems on 
existing dwellings. Some SEDs have had significantly higher uptake of rooftop PV than 

 

10 Australian PV Institute (APVI) Solar Map, funded by the Australian Renewable Energy Agency, 
accessed from pv-map.apvi.org.au  
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others as a percentage of dwellings; simply scaling all SEDs equally would not capture the 
likely greater geographical diversity in the future as the cost of installation continues to fall. 
Conversely, there may be genuine barriers to uptake in some areas. Therefore, uptake in 
each SED was first increased to halfway between its current level and the maximum density 
of all SEDs (59.9% of dwellings). Then capacity in all SEDs were scaled up to meet a target 
future megawatt capacity for each region.  

3.5 Scenario definition 

Two scenarios were modelled. The Existing fleet scenario models all existing wind, solar and 
rooftop PV capacity where a full year of data exists for at least calendar year 2021, with site 
specific calibration for wind farms. 

The Future NEM scenario includes significantly more and varied renewable projects based 
on AEMO modelling of a near-zero-emissions 2050 scenario11. Representative traces for 54 
wind and 47 solar locations across the mainland NEM12 were simulated and scaled based on 
AEMO modelling for each Renewable Energy Zone. This scenario includes 62 GW of wind 
and 65 GW-ac of solar. 52 GW of rooftop PV across 104 distinct MERRA-2 grid points was 
also simulated. To be clear, this scenario represents only one possible view of the future, 
and actual build out will depend highly on optimising resource quality, diversity trade-offs, 
and transmission capacity.  

4. Results 

4.1 Instantaneous production 

Figure 10 shows the generation-duration curve for as capacity factor (% of nameplate 
capacity) for both the Existing fleet, and the Future NEM fleet. The lowest backcast output 
for the existing fleet was a 0.59% capacity factor, at 4am 19th April 2020. This was confirmed 
by examining historical metered data for units that were installed by 2020, where the 
instantaneous production from mainland NEM utility VRE and rooftop PV fleet around that 
time fell as low as 0.31%13. For the future NEM fleet, the minimum fleet output is slightly 
higher (1.39% at 5pm 17th May 2010), consistent with the greater geographical diversity of 
capacity in that scenario. 

 

11 AEMO Draft Integrated System Plan Step-Change Scenario, available at https://aemo.com.au/-
/media/files/major-publications/isp/2022/draft-2022-integrated-system-plan.pdf  

12 Tasmania was not included in the modelling, due to comparatively low interconnection and 
significant hydro fleet that would be utilised for storage in a high-VRE future. 

13 This occurred at 5:20am, slightly later than the simulated backcast, but all periods were low. 

https://aemo.com.au/-/media/files/major-publications/isp/2022/draft-2022-integrated-system-plan.pdf
https://aemo.com.au/-/media/files/major-publications/isp/2022/draft-2022-integrated-system-plan.pdf
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Figure 10 VRE capacity factor duration curve (relative to total fleet MW) 

 

Figure 11 shows the week surrounding that period, which was driven by low wind production 
across the mainland NEM coinciding with the sun setting. 

Figure 11 Future NEM output around worst hour (backcast 5pm 17th May 2010) 

 

This shows that it is credible that a VRE fleet could deliver less than 1% of its nameplate in a 
small number of periods. These low periods may overlap with high demand mornings or 
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evenings, and sufficient firming capacity will be required. However, as Figure 12 shows, 
there is a strong diurnal trend of minimum VRE output over the dataset. Solar PV is 
significantly more predictable than wind: with a larger more geographically diverse future PV 
fleet (both utility and rooftop) the fleet’s midday production can be relied upon for 25% of its 
capacity at a minimum, with the lowest VRE periods occurring overnight.  

Figure 12 Backcast of lowest VRE outputs by time of day 

 

The specific quantity of instantaneous firming capacity will be dependent on the regional 
reliability standard and detailed modelling of the correlation between demand and wind. For 
example, in (Gilmore et al, 2022) simulations of a 100% renewable system yielded 25 GW of 
firming capacity against a peak demand of 30 GW. While the available VRE in that modelling 
was sometimes less than 1% of nameplate, these periods did not correspond with the peak 
demand periods. Conversely, during peak demand periods, the VRE fleet was more 
available. A question for policy makers will no doubt relate to whether it is preferable to 
procure the additional 5 GW of firming resources as insurance against low VRE production 
periods coinciding with peak demand. 

Therefore, for the avoidance of doubt, this analysis does not suggest that the contribution to 
reliability of VRE projects is only 1% of its capacity14. Nevertheless, from a planning 
perspective, firming capacity comparable to the peak demand will likely be required. 

 

14 A proper assessment of firming value of VRE requires sophisticated modelling, such as Equivalent 
Load Carrying Capacity (ELCC). 
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4.2 VRE output over longer periods 

Separate to the MW of capacity required, a key question is how much stored energy is 
needed to underpin firming capacity. A closely related question is the amount of renewable 
generation available over various timescales. Rather than comparing output to nameplate 
megawatts, we consider i) the energy available relative to the average production, which 
informs the daily and seasonal storage requirements, and ii) the energy relative to the 
“expected” seasonal output (defined below) which informs the magnitudes of renewable 
energy droughts (i.e., lower than expected output). Given the diurnal profile of solar and the 
likely availability of short-term storage in the future, we focus on the average output from the 
VRE fleet over one or more days.  

Figure 13 shows the available energy over 1, 7, 14, and 28 days for each of the 42 simulated 
reference years, relative to the average generation over the entire study period. The blue 
line shows the average seasonal trend15. Outcomes for the Existing fleet scenario are 
similar, but with a smaller seasonal component due to the lower share of solar PV. To avoid 
repetition, we therefore focus on the Future NEM from this point. 

Figure 13 Average VRE output over various timescales 
(Future NEM, relative to 42-year mean; each thin series is one year, blue line is long-term average) 

 
 
On the worst winter day, available energy falls to 32.6% of the long-term average, while the 
best days (typically October to December) exceed 150% of the long-term average. This 

 

15 The seasonal trend for daily output was defined as the centred, 14 day rolling mean output for that 
day across all 42 years. For example, the expected output for January 14th was defined as the mean 
output from January 7th to 21st from 1980 to 2021. For expected output over longer durations, these 
expected daily outputs were averaged (e.g., over 7 days) the same as the other reference year 
traces. 
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variability is a combination of seasonal trends (blue line) and daily weather variability, which 
is considered further in Section 4.3.  

Critically, the variability reduces over longer timescales. Figure 14 shows the minimum 
output observed over 1 to 60 days (rolling average) for the VRE fleet (solid blue line) relative 
to the long-term mean. The worst 7 day period still delivers half (48.4%) of expected energy 
and the worst month two-thirds (64.7%). For any given renewable energy scenario, this 
approach can therefore quantify the spread of seasonal and daily outcomes. 

The dotted lines in Figure 14 show the contribution from individual technologies. For shorter 
periods, the aggregate portfolio has a higher reliability of supply than any single technology – 
there is diversity of resource that helps avoid the worst periods. The worst (backcast) 
performance rapidly asymptotes for periods beyond three weeks 16. Restricting the analysis 
to just the most recent 10 years of data underestimates the depth of the worst droughts over 
periods of up to seven days by ~10 percentage points and by ~5 percentage points over 
longer periods, with no single historical year being responsible for all worst-case events of all 
durations.  

Figure 14 Lowest VRE output over various timescales (Future NEM, relative to 42-year mean) 

 
 
 

 

16 By definition, the “worst” observed period gradually rises to the mean output (i.e., 100%) over 
enough periods, which is not shown on this figure. 
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4.3 Quantifying the risk of VRE droughts 

Much of the variability described above would be anticipated by planners and investors. For 
example, the central blue line in Figure 13 highlights the strong seasonal trends in the 
simulated solar PV production. Suitable seasonal storage or other firming would naturally be 
developed given its predictability, and informed by the analysis of Section 4.2. However, 
policy makers will also be concerned about the inherent uncertainty of weather and hence of 
extended periods of low output (or “renewable droughts”) not foreseen by planners.  

It will therefore be helpful to separately quantify the variability of VRE output relative to 
expected or predictable trends in production17. Figure 13 shows, on any given day, available 
energy (coloured lines) varies by approximately 50% of the expected seasonal output (solid 
blue line). Over 7 days, this uncertainty reduces to ~30%, and over 28 days to ~20%. Once 
seasonal trends are taken into account, the “worst case” periods are milder. For example, 
historically over a two week period the available VRE energy does not fall below 75% of 
expected production. This is shown in  Figure 15 which compares the absolute lowest output 
of renewables (the blue line from Figure 14) with the lowest output relative to the seasonal 
expected output (dashed black line).   

Figure 15 Lowest VRE output versus expected output (long-term average or seasonal; Future NEM) 

 
 

A key question is whether the worst case outcomes identified in Section 4.2 coincide with 
consumers’ willingness to pay. Historically, reliability standards and market price caps have 
been used to avoid overbuilding capacity to cover very unlikely events. It is therefore 

 

17 The intra-day analogy is the diurnal profile of solar PV: this profile (particularly the lack of overnight 
solar energy) is well known and can be accounted for, while the variability of midday January output is 
a separate but important consideration. 
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necessary to quantify both the magnitude and frequency of renewable droughts. We adapt 
the Mean Below Threshold metric of Ohlendorf and Schill (2020) to measure consecutive 
days where the moving average capacity factor was below a particular threshold relative to 
the expected seasonal output18. The predictable seasonal variations (for instance, output in 
winter typically regularly being below 80% of the mean) are therefore netted out. The longest 
events were counted first, those periods removed from the data series, and then iteratively 
shorter periods counted (ensuring no overlapping events). The total number of events of a 
given duration or longer were then counted. The return period is then defined as the 
reciprocal of the average (mean) annual frequency of events of a given duration or longer.  

Figure 16 shows the mean return period (average time between events) for average output 
being less than 85% and 70% of expected production. System planners therefore can have 
confidence that, relative to expected output, a “one in ten year” event is VRE output less 
than 70% of expected output for ten days, or less than 85% for 45 days. A one in 40 year 
event would be two weeks with output less than 70% of expected. There may be some long-
tail events that are not captured in the 42 year sample period, but by definition these will be 
uncommon and therefore comparable with other non-credible events that are unlikely to be 
cost effective to plan against. 

Figure 16 Average return period for VRE droughts (higher number means less frequent) 

 
 

 

18 Expected output was defined as the centred, 14 day rolling mean output across all 42 years. For 
example, the expected output for January 14th was defined as the mean output from January 7th to 
21st from 1980 to 2021. 
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4.4 Solar tracking and winter risks 

The main seasonal trends in Figure 13 are primarily driven by variability in solar output19, 
which in turn is driven by two key assumptions. Firstly, all future solar PV systems are 
modelled with an AC/DC MW ratio of 1.2 (existing NEM sites typically have ratios between 
1.05 and 1.33). Higher ratios will allow for more production during winter months with low 
insolation (with lesser impact on summer months), reducing annual variability. Secondly, all 
sites are assumed to be single-axis tracking, aligned north-south, consistent with the 
majority of announced projects. However, at lower latitudes of Australia, single axis tracking 
(SAT) sites perform particularly poorly over winter. This is because when the sun is low in 
the sky, the angle of incidence is unfavourable – particularly in the middle of the day. 
Conversely, fixed flat plate (FFP) systems, facing north with an elevation equal to their 
latitude, typically perform better. For example in Figure 17, Colleambally and Numurkah 
solar farms (SAT) have only a third to a half of the production over winter as they do in 
summer, while White Rock and Nyngan (FFP) see reductions of only ~20%.  

Figure 17 Comparison of typical SAT (left) and FFP (right) average weekly solar production historical 
(black) and backcast (red) for  Cal20 

 

 

19 Wind output is fairly constant across the year, slightly higher over the winter period (July-October) 
and lower in Autumn.  
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In a future high VRE penetration grid, it may therefore be beneficial to include some FFP 
solar, particularly in the southern states. If all utility solar was FFP instead of SAT, roughly 
7% more energy could be delivered over the winter months (Figure 18), reducing the need 
for seasonal firming.  As shown in Figure 19, this would reduce the worst observed VRE 
events by roughly 3-8 percentage points. This additional winter production generally comes 
at the expense of some net annual production (roughly 2% given the assumptions of this 
modelling) but avoids the cost of the tracking system; on balance, studies typically find a 
slightly lower levelized ($/MWh) cost for SAT solar20, but this cost may be small compared to 
the resulting seasonal firming benefits. As energy policy evolves, it will be important for 
policy makers to consider that energy production value will vary not just intra-day but across 
the year as well. 

 

Figure 18 Change in seasonal output from switching from SAT solar to FFP solar 

 

 

20 For example, https://www.nrel.gov/pv/lcoe-calculator/  

https://www.nrel.gov/pv/lcoe-calculator/
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Figure 19 Worst VRE periods with single-axis and fixed plate solar (Future NEM, relative to 42-year 
mean) 

 
 

4.5 Benefit of geographical diversity 

Strong interconnection between regions will have a benefit in reducing the risk of prolonged 
outages. Figure 20 shows similar analysis to Figure 14 on a regional level (dotted lines) and 
then for the combined fleet (for the Future NEM portfolio). This shows that each state, on its 
own, would have lower possible VRE performance compared to the NEM-wide output, when 
evaluated over (between) 1 and 10 days. While regions will no doubt have their own 
dedicated firming resources (both to ensure local needs are met and to manage potential 
interconnector outages) this suggests that strong interconnection will materially reduce the 
risk of energy shortfalls. The benefit of reduced firming requirements may not be considered 
in transmission planning studies (such as the ISP and associated RIT-T calculations) if 
sufficient resource variability (i.e., reference years) have not been considered. 
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Figure 20 Worst periods in individual states and the fleet (Future NEM, relative to 42-year mean) 

 

 
 

4.6 Ramping requirements in the NEM 

This modelling can also be used to consider the future maximum ramping requirement in the 
NEM, shown in Figure 21. On the worst days, available production can shift by over 40 GW 
in an hour (out of installed VRE capacity of 180 GW). This is primarily driven by predictable 
changes  in large-scale and rooftop solar production over morning and evening ramp ups, 
but hourly wind production changes of up to 15 GW (one quarter of the installed capacity) 
were also observed. In practice, this will be mitigated by either energy storage or curtailment 
during the highest output periods, but hourly changes of 20-30 GW will be common in the 
future grid and will require flexible generation and load. Policy makers will need to ensure 
that sufficient signals for flexibility (and, conversely, not overvaluing existing inflexible 
capacity) are available in the market. For example, capacity markets might need to further 
derate units based on their flexibility and ramping capability, requiring consideration of unit 
commitment strategies in any modelling. 
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Figure 21 Worst daily VRE ramp rates (MW change per hour in Future NEM scenario) 

 
 

 

5. Discussion and conclusions 

The NEM is rapidly transitioning to a ~100% VRE system, with the majority of energy 
supplied by weather dependent energy resources. Just as the NEM has historically had 
headroom of installed capacity above peak demand to allow for outages, it is likely that the 
future grid will have headroom around its available energy. This paper helps to quantify 
these future requirements. 

Through the MERRA-2 reanalysis dataset, we have undertaken a calibrated backcast of the 
existing VRE fleet as well as a hypothetical Future NEM fleet with greater geographical 
distribution. While the concept of energy droughts have received much attention, we do not 
find evidence of extended time periods of low VRE production in the NEM.  For example, 
over a two-week period in the worst historical time sequence, the VRE fleet would still have 
delivered 54% of its average output or 70% of the expected output once seasonal trends 
(e.g., winter solar production) are taken into account. A 30% reduction in expected energy is 
therefore the worst two-week historical VRE drought on record. 

These figures also assume no curtailed energy. In practice, it will almost always be efficient 
to overbuild renewables at a local level (for example, to better utilise a costly transmission 
line). The market operator (in the AEMO ISP results that inform the Future NEM scenario) 
projects 20% VRE curtailment by 2050, while (Simshauser et al., 2021) have suggested that 
a 20% to 240% overbuild of capacity on a transmission line would be efficient. The 
subsequent curtailment will reduce variability of output and deliver more constant energy 
both daily and seasonally, reducing the risks of droughts. 
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Based on this analysis, the previous VRE drought risks may have been overstated. Indeed, 
the authors of this paper previously considered a “worst case” VRE drought sensitivity 
(Gilmore et al., 2022) where wind and solar production was capped at (or below) 10% of 
their respective nameplate capacities for a seven-day period. In that period, the fleet 
delivered only 18.9% of its average production compared to the worst-case 53.4% projected 
above. Longer but milder energy droughts were moderately underestimated, however. 

Implications for planners and policy makers 

This analysis is critical for investors, planners, and the system operator in considering the 
needs of the future grid. The variability in renewable output over various timescales can be 
used to enhance planning models. The optimal build of firming naturally requires more 
sophisticated modelling, but these figures can provide intuition to policy makers in three key 
areas.  

Firstly, it highlights the amount of firming required. For example, consider the simplest case 
of flat demand across the year, and the VRE fleet were built such that average generation 
equalled average demand. Section 4.2 suggests the worst case firming energy requirements 
would be equal to i) two-thirds of the daily average energy demand; and ii) one-third of 
average monthly energy demand. This firming could be delivered through conventional 
hydro, seasonal energy storage, or zero emissions gas peaking units but “overbuilding” the 
renewable energy fleet (that is, allowing for some spilled energy over time) is also likely to be 
an efficient source of energy firming. The relatively flat production risk over periods longer 
than two weeks (Figure 15) means technologies that can deliver additional energy over 
longer periods will be favoured (i.e., building additional VRE capacity and fuel based 
technologies such as zero emission OCGTs). A highly flexible demand side (e.g., hydrogen 
export industry) will support additional VRE build and provide its own source of firming. 

To deliver this firming, utilities with diverse portfolios will then incorporate firming strategies 
(including assuming VRE will only produce at a P70 (70th percentile) level) to manage both 
capacity and energy risks. Historically, it has been reasonable to expect that “1 in 10 year” 
risks can be managed21. However, this analysis (Section 4.3) shows that 1-in-20 or 1-in-40 
year VRE droughts are possible, and it may not be prudent for private utilities to invest to 
cover these risks. Therefore, these periods would either require a suitably flexible demand 
side, or some additional energy reserves to be procured by governments on behalf of the 
community and energy users. This energy would need to be held in reserve out of the 
market, so as not to simply substitute for prudent utility hedging. As such, policy makers 
should urgently consider the investment timeframe capacity reserve suggested by Nelson et 
al (2022) and an operating reserve that could be utilised to deliver this outcome. 

Secondly, this analysis highlights that traditional capacity markets, where compliance is 
measured through capacity availability, will almost certainly not provide the required signal 
for sufficient energy production. Instead, real-time scarcity signals will be critical for providing 
investors with the necessary signals (i.e., price exposure) to invest in long-duration firming 

 

21 More extreme conditions are then either managed through spot markets, reserve capacity schemes, 
or load shedding consistent with the relevant reliability standard. 
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technologies. The NEM’s energy only market seems well suited to this purpose (Riesz et al., 
2016), with a Market Price Cap of $15,500/MWh that imposes a strong penalty for not 
delivering on contracted positions. A key parameter is the Cumulative Price Threshold 
(CPT)22 that caps spot prices at $300/MWh if average prices over a 7-day period exceed a 
threshold ($692/MWh). Increasing this trigger will provide a stronger incentive for utilities to 
invest in longer duration storage, in particular.  

Finally, we find that diversity of resource between regions will help reduce the risk of 
localised droughts, and so governments should work quickly to strengthen regional 
interconnectors. The entire process of economic consideration of transmission investment 
requires an overhaul. Economic cost benefit analyses should include a longer-term 
timeframe analysis of resource variability as well as carbon constraints and budgets.  

Concluding remarks 

It is indeed physically and economically possible to power Australia’s NEM using energy 
entirely sourced from variable energy-dependant resources supported by storage and 
firming technologies. To achieve Australia’s emissions reduction commitments, it will be 
important for policy makers to embrace the transition and design incremental changes to the 
market framework to deliver this outcome. 
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