

Submission on SBSTA62 agenda item 14: Cooperation with other international organizations

Authors; Virginia Young (virginiayoung9@gmail.com or v.young@griffith.edu.au); Professor Brendan Mackey (b.mackey@griffith.edu.au); Dr. Heather Keith (h.Keith@griffith.edu.au); Cyril Kormos (cyril@wild-heritage.org); An lambrecht (alambrec@greenpeace.org); Catalina Gonda (gondacatalina@gmail.com)

September 2025

This submission is in response to the invitation to Parties and observers, contained in SBSTA62 conclusions on agenda item 14: "Cooperation with other international organizations", to provide further views to inform the SBSTA's consideration of this matter (1) which was made in the context of decisions taken at CBD COP 16 (16/22) and UNCCD COP 16 (8/COP.16) encouraging synergistic actions between the Rio Conventions and other Multilateral Environment Agreements, focussing on the importance of encouraging synergies between climate and biodiversity outcomes.

Table of Contents

Introduction	2
Background	2
Key Principals	3
The Challenge for the UNFCCC	7
Developing guidance under the UNFCCC	9
Adaptation	10
Linking with the UNCCD	10
Conclusions	12
Recommendations	13
References	15

Introduction

This submission complements the submission made by Birdlife International on behalf of the Ecosystems Working Group of CAN International in collaboration with an ad hoc ‘Synergies Group’ of other civil society organisations, working to achieve synergistic climate and biodiversity outcomes. We focus on the central importance of retaining and recovering ecosystem integrity at a landscape scale for achieving the goals and targets of each of the Rio Conventions and in particular the Kunming-Montreal Global Biodiversity Framework and the Paris Agreement.

Given that the role of Forests in climate mitigation will be a key feature of the post Global Stocktake Climate Mitigation Work Programme which aims to scale up climate ambition, this submission highlights the importance of protecting and restoring biodiversity and ecosystem integrity in forests for maximising synergistic climate and biodiversity outcomes.

Background

In an historic decision on climate and biodiversity at COP 16 the UNCBD recognized:

- “that biodiversity and ecosystem integrity play an important role in combating climate change”;
- “the essential functional role of biodiversity in underpinning the integrity of ecosystems and ecosystem services”; and that
- “protecting and restoring ecological integrity contributes to addressing both climate change and biodiversity loss, and its impacts”.

Parties were urged to “identify and maximize potential synergies between biodiversity and climate actions, including by prioritizing the protection, restoration and management of ecosystems and species important for the full carbon cycle and contributing to climate change adaptation” (CBD 16/22).

At UNFCCC COP 28, the decision aimed at resetting climate ambition following a ‘Global Stocktake’ of achievements, challenges and actions needed to limit warming to 1.5 degrees, emphasized in CMA 5 para 33:

“...the importance of conserving, protecting and restoring nature and ecosystems towards achieving the Paris Agreement temperature goal, including through enhanced efforts towards halting and reversing deforestation and forest degradation by 2030, and other terrestrial and marine ecosystems acting as sinks and reservoirs of greenhouse gasses and by conserving biodiversity, while ensuring social and environmental safeguards in line with the Kunming-Montreal Global Biodiversity Framework;”

And the UNCCD, in decision 8/COP 16, encouraged parties ‘to leverage synergies at the national level in the planning and implementation processes of the three Rio Conventions through integrated actions and approaches and prioritize holistic and integrated action to tackle desertification, land degradation and drought, and their interlinkages with climate change and

biodiversity loss...’

A technical exchange between the three Rio Conventions was held before UNFCCC SB 62 in Bonn where their respective mandates to pursue synergistic action was discussed together with the imperative and opportunities for, achieving synergistic outcomes identified by IPBES. The workshop stressed the urgency of protecting and restoring biodiversity and ecological integrity for achieving the goals and targets of the K-M GBF, meeting the overarching commitment in the preamble to the Paris on ensuring the integrity of all ecosystems and protecting biodiversity and implementing UNFCCC decisions on the Global Stocktake; and achieving the goals of the UNCCD.

Key Principles

We recommend the following science and evidence-based key principles for guiding international cooperation to promote climate-biodiversity synergies.

1. Biodiversity loss is an existential threat to humanity that should receive as much attention as limiting global warming.

The biodiversity crisis is as serious as the climate crisis (2), yet it receives a fraction of the attention and funding required to reverse the disastrous trajectory we are on (3). Desperately needed whole-of-government and whole-of-society responses to prevent further biodiversity loss, fragmentation and damage to ecosystems and all forms of pollution, have not materialized. Communicating the seriousness of the problem to policy and decision makers, as well as concerned and interested citizens, is urgently needed. Carbon sequestration and storage (also referred to as carbon retention) are among many important ecosystem services provided by natural ecosystems and their component biodiversity. The quality and quantity of these—services depend upon the level of ecosystem integrity and the stability, resilience and adaptive that brings. Understanding that biodiversity underpins ecosystem integrity, including the capacity of ecosystems to adapt to climate change and thus every ecosystem service on which humanity relies, is therefore critically important for effective policy that support synergies.

The scientific basis of the climate-biodiversity nexus is the role of terrestrial and oceanic ecosystems in the global carbon cycle. Humans have disrupted this cycle through fossil fuel emissions and those from deforestation and forest degradation. These human-caused emissions into the atmosphere are occurring at a rate faster than the natural sinks (oceans, ecosystems) can remove them. What climate policy has ignored to date is that ecosystem protection and restoration is as important as ending fossil fuel emissions for achieving net zero emissions, stabilising atmospheric concentrations of CO₂ and capping global warming. By focusing mitigation policy solely on the narrow goal of reducing atmospheric CO₂, we are in danger of allowing the ongoing destruction of the living world that actually regulates our climate. We must bring to the front and centre of climate policy, the protection and restoration of biodiversity and ecosystem integrity. Tellingly, a leading agricultural scientist is now joining the call to recognize that biodiversity is a system driver that climate mitigation action should be built upon (4).

Failure to understand the importance of biodiversity protection and restoration for climate is manifest in the UNFCCC where LULUCF rules developed under the Kyoto Protocol are biodiversity blind, focus on the mechanics of net annual fluxes of atmospheric CO₂ and ignore the fact that biodiversity and related ecological processes remove carbon from the atmosphere and reduce the risks to ecosystem carbon reservoirs.

Transposing LULUCF rules to REDD+ without factoring in biodiversity and ecosystem integrity has meant that degraded forests and plantations are considered to have equal mitigation value and risk levels. This is not the case as primary, old growth and mature forests store more carbon at lower risk. The consequence is that LULUCF and REDD+ rules have (albeit inadvertently) created a global legacy of high-risk climate mitigation action in forests that has had little impact on preventing deforestation and forest degradation in developed or developing countries.

By making climate and biodiversity decisions without considering the inter-dependencies, we are prevented from the systems thinking needed to solve these inter-connected problems. This failure in systems thinking and analysis results in turn from the failure to understand the levers that drive systemic change.

2. Ignoring the impact of climate action on biodiversity and ecological integrity increases the likelihood of losing or damaging many essential ecosystem services on which humanity relies.

Biodiversity is a system driver that underpins every ecosystem service on which humanity depends, including carbon storage. The stability and quality of every ecosystem service on which humanity relies are under threat from over-exploitation, fragmentation and all forms of damage to biodiversity and ecological integrity. Human activity has exceeded 7 of 9 planetary boundaries (5).

The result is that we are facing global crises in biodiversity, water, food, health and climate change, none of which can be solved in isolation. The 2024 IPBES Nexus Assessment examines the interdependencies between multiple crises and offers holistic solutions aimed at improving outcomes across sectors and systems.

Achieving the goals of the Rio Conventions requires a shared understanding of the functional role of species and genetic diversity in ecosystem processes, the ecosystem services they provide, including climate mitigation and adaptation, and their contribution to maintaining planetary boundaries of the processes that regulate the stability and resilience of the Earth system.

Preventing further loss, fragmentation and damage to natural ecosystems is essential if we are to achieve the goals of each Convention. Importantly, GOAL A of the K-M GBF is to retain and recover ecological integrity and its 2030 targets are firmly pointed at helping to achieve this urgent goal.

A holistic approach would ensure that:

- Climate action in land, forests and other ecosystems contributes to achieving the goals and targets of the K-M GBF;
- The climate mitigation and adaptation goals of the Paris Agreement as reinforced in COP 28 CMA 5, are achievable; and
- The goals of the UNCCD to prevent further degradation and foster ecological recovery of degraded lands as per UNCCD 16/8 are encouraged.

Protecting and restoring ecosystem integrity is a common responsibility of each of the Rio Conventions (6). Areas of high ecological integrity are irrecoverable in any relevant time frame and in many cases not at all and are therefore a high priority for synergistic action. It is imperative that we improve understanding that protecting and restoring ecosystem integrity protects and maximizes all the ecosystem services on which humanity relies.

3. Prioritising the protection and recovery of ecosystem integrity is essential to ensure intergenerational and equitable access to environmental resources

Intergenerational equity requires the current generation to conserve natural resources and the environment in a state that is at least as good as they received it, ensuring future generations can meet their own needs. This principle is embedded in instruments under international law - including the Rio Declaration that serves as a foundational principle for sustainable development, guiding actions that impact future well-being.

Achieving intergenerational equity requires, among other critical actions, halting and reversing damage and loss to biodiversity and the integrity of ecosystems.

The ecological integrity of ecosystems - also referred to as ecosystem integrity - in general terms refers to the ability of ecosystems to maintain key ecological processes, recover from disturbance, and adapt to new conditions (7) and continue their processes of self-organization and regeneration (8). In more practical terms, it relates to an ecosystem's capacity to maintain its characteristic composition, structure, functioning and regeneration over time given prevailing environmental, including climatic, conditions and natural disturbance regimes (9).

The integrity of an ecosystem is reduced or lost through degradation from land use that impacts its structure, composition and functioning (10).

Synergistic climate and biodiversity actions needed to deliver intergenerational equity include: providing mechanisms and incentives for retention of all remaining areas of high ecological integrity; increasing effective protection and restoration of natural ecosystems more generally; avoiding incentives and subsidies for actions that degrade ecosystems including through fragmenting landscapes; and explicitly preventing the loss of species and genetic diversity as a core component of policies and programmes.

While important progress is being made on ecosystem integrity as a multilateral policy priority, a greater shared understanding is nonetheless required among experts in both climate and biodiversity who contribute to the UNFCCC, CBD and UNCCD decision making about the central role of ecosystem integrity in achieving their respective goals and ensuring intergenerational equity.

4. Protecting and restoring biodiversity minimises risks to forest ecosystem carbon stocks

Achieving climate mitigation and adaption goals requires the retention of stable carbon stocks in the biosphere which in turn is reliant on retaining and recovering the natural components of biodiversity that underpin ecosystem integrity.

All ecosystems are dynamic, and the healthy functioning of their ecological processes are the result of, and depend upon, their evolved, natural species and the ecological communities and networks they form. Examples of ecological processes in forests include:

- Soil biota, including invertebrates, fungi and bacteria break down litter and coarse woody debris on the forest floor, thereby recycling nutrients and producing organic matter in the soil that increase water holding capacity and carbon storage.
- Insects, birds and animals pollinate and disperse seed on which many plant species depend for their reproduction and which therefore maintain the natural vegetation composition and the local species that are resistant to disease and invasive species.
- The canopies of primary and other natural forests largely undisturbed by modern industrial activities, are dominated by big old trees that generate and maintain a moist, cooler forest interior micro-climate that make the forest resistant to drought and fire.
- Most of the biomass carbon in primary tropical forests is stored in the woody biomass of big old trees, in old growth boreal forests large carbon stocks are stored in dead biomass, soil, peat and wetlands, and in old growth temperate forests most of the biomass carbon is stored in big old trees but with equally significant stores in dead biomass on the forest floor and soil. The highest forest biomass carbon stocks are found in old growth cool, wet temperate forests in Canada, North America and Australia.

Minimising industrial-scale land use impacts and respecting the rights of Indigenous Peoples and local communities including land rights in forests, is critically important for maintaining the ability of forests to sequester, accumulate and retain carbon over the long term.

Forests comprised of their natural components of biodiversity, such as primary and old growth forests, have higher ecosystem integrity and thus are more resistant to threats, have more stable long-lived carbon stocks, provide higher quality and more consistent fresh water and other ecosystem services and have greater resistance and resilience to disturbances, compared to young regrowth, plantations and secondary forests.

Every time a road is pushed into an area of primary forests, or they are logged (even 'lightly') we reduce their integrity and resilience, generate GHG emissions, and increase the risk that the forest will release more of its remaining stored carbon in the future. Loss of big old trees (which make up 1% of trees globally but store 50% of the above ground carbon in forests) (11) and other critical elements of biodiversity, combined with edge effects from roads and other impacts from logging disturbance, increase the vulnerability of forests to severe drought, heatwaves and fire as well as other human-induced threats such as insect predation and disease. All these threats are increasing with climate change and interact with logging to increase fire severity and the risk of forest ecosystems reaching tipping points. Degraded (including logged) forests are at much greater risk of losing carbon to the atmosphere than forests with a high level of ecosystem integrity.

Climate change is a key driver of increased drought and fire intensity, but the severity of the impacts on forest ecosystems is influenced by their degree of integrity. The science is clear that young, degraded forests are far more vulnerable to drought and fire, have lower resilience, and hence suffer more severe impacts and reduced ability for regeneration (12,13).

The Challenge for the UNFCCC

At COP 28 UNFCCC CMA 5 accepted that climate action in land, forests and other ecosystems should align with the K-M GBF which as mentioned above includes a key Goal (A) of retaining and recovering ecological integrity and connectivity.

More needs to be done to ensure all decision makers understand that the ability of ecosystems to sequester and retain carbon over the long term are ecosystem services underpinned by ecological integrity and biodiversity. Parties will have to build consensus around the challenges and opportunities for achieving synergistic climate and biodiversity action noting that the challenges include the current 'carbon' centric focus of climate action in forests and other ecosystems and the perverse outcomes from some LULUCF and REDD+ rules' for both climate and biodiversity.

Commitments in the Paris Agreement Preamble emphasizing the need to protect and restore ecosystem integrity have never been more important. Both protection and restoration are essential for achieving the conservation of ecosystem carbon reservoirs required by Article 4.1 (d) and Article 5.1, respectively, of the Framework Convention on Climate Change and the Paris Agreement.

Despite the well-established scientific understanding of the role of biodiversity in ecosystem integrity and the significant role of ecosystems in the global carbon cycle (14,15), the UNFCCC has yet to provide guidance on how best to deliver synergistic climate and biodiversity outcomes. Nor has operational guidance been developed to give effect to the ecosystem provisions of the Convention and Paris Agreement. Filling this gap would necessitate revisiting or at least supplementing current LULUCF accounting rules to include information on the integrity, stability and risks to ecosystem carbon stocks (reservoirs). A system that provides reliable information to

parties for assessing the relative benefits and risks of management actions for mitigation would enable parties to prioritize such actions.

Nor has the IPCC yet grappled with the implications for climate mitigation of ongoing biodiversity loss and associated declines in ecosystem integrity, although they have reflected on the need to do so. It is sobering that the current set of climate change models (16) do not factor in the role that biodiversity and ecosystem integrity play in carbon cycles and what this means for modelled climate risk assessments and pathways to limiting warming. This limitation has been noted by the IPCC (AR6 WG III) but no recommendations have been made on how to address this fundamental gap.

Examining this gap would benefit from either a joint IPCC/IPBES work programme or utilising an AHTEG of relevant experts to deliver advice and guidance in a pre-2030 timeline. It is critically important to do so as soon as possible because when the integrity of carbon dense ecosystems is damaged their capacity to sequester and store large and relatively stable carbon stocks is damaged and at increased risk of releasing more carbon to the atmosphere.

Damage to biodiversity and ecological integrity increases GHG emissions and creates unacceptable risks to long-term ecosystem carbon storage threatening our ability to limit warming to as close as possible to 1.5°C above pre-industrial levels and damaging the ability of ecosystems to adapt to climate change. This is particularly important for carbon dense ecosystems. Forests alone store more carbon than known reserves of oil and gas (17).

With every increment of global warming ecosystem carbon reservoirs are under increasing threat from rising climate trends and extremes. The ability of ecosystems to retain carbon is dependent upon both their ecological integrity, and our success in simultaneously reducing emissions from fossil fuels to limit warming to as close as possible to 1.5 degrees (7).

It is not an exaggeration to say that if biodiversity is ignored in climate mitigation measures climate action in land forests and other ecosystems will have a high risk of failure, reducing both the capacity of ecosystems to draw down carbon from the atmosphere and their capacity to store carbon for the long periods of time necessary to achieve a balance of emissions and removals in the atmosphere. Protecting and restoring biodiversity should not be thought of as merely a co-benefit of climate action. Rather, it must be understood as a pre-requisite for successful, low-risk climate mitigation and adaptation in land, forests and other ecosystems (7).

Retaining existing ecosystem carbon reservoirs is therefore essential for achieving the Paris Agreement long-term temperature goal, and new policy approaches are needed to foster this critically important climate mitigation outcome.

Developing guidance under the UNFCCC

Providing guidance and helping parties prioritize the most effective actions, depends upon increasing the depth of understanding among decision makers of the critically important functional role of biodiversity, in all its complexity, in enabling ecosystems to sequester and retain carbon, especially in the face of threats like drought and fire that are increasing as our planet warms.

Developing robust guidance would require the expertise and knowledge of specialists including Indigenous Peoples and local communities who understand and can communicate the complex relationships between the natural patterns and components of biodiversity (including diversity at the genetic, species and community levels), ecosystem integrity, and why retaining and restoring the ecological integrity of ecosystems is fundamentally important for minimizing the risks to ecosystem carbon reservoirs (stocks) and keeping Earth's vast ecosystem carbon stores out of the atmosphere (18).

Without such guidance, including revised or supplemented accounting rules, climate action to protect and restore carbon dense ecosystems, including Earth's primary and other natural forests, will remain ineffectual and do little to change the business-as-usual focus on net annual sequestration, nor shift the focus away from afforestation, reforestation and maintaining young, highly modified forests, towards retaining and recovering the maturity and ecological integrity of natural forests.

New metrics are required to: (a) encourage management actions that protect the stability and reduce the risks to, ecosystem carbon stocks (reservoirs), (b) reflect the importance of ecosystem integrity for maximizing and retaining carbon storage over the long term, (c) recognize the functional role of biodiversity in underpinning ecological integrity of ecosystems, and (d) utilise as a reference level the carbon carrying capacity of primary ecosystems (19).

Working together, the UNCCD, UNFCCC and CBD could ensure ecosystem dynamics and the factors that influence them are far better reflected in climate mitigation outcomes and improve the resistance, resilience and adaptive capacity of natural ecosystems thereby better enabling the retention and recovery of the carbon reservoirs needed to limit warming to as close as possible to 1.5 degrees while also achieving the Goals of the K-M GBF and UNCCD.

The current downwards spiral of the climate and biodiversity crises - where each crisis amplifies the other through positive feedbacks - must be understood and halted. We need to do two things simultaneously: 1) rapidly reduce gross emissions from fossil fuels, transitioning to clean energy renewable sources and 2) rapidly improve the protection and restoration of ecosystem integrity, especially of our most carbon dense ecosystems. Doing so is absolutely essential to achieve the goals and targets of the Rio Conventions and meet the systemic challenges for humanity identified by IPBES.

Adaptation

While the protection and restoration of our most carbon dense ecosystems is a high priority in order to help avoid catastrophic climate change (16), it is also critical for delivering adaptation benefits for people and nature (7). The capacity of species and ecosystems to adapt to climate change is absolutely dependent upon retaining and recovering ecosystem integrity as it the biodiversity at all levels that provides for their natural adaptive capacity in response to human influenced climate change (20). Furthermore, the greater quality and quantity of ecosystems services arising from high integrity ecosystems are also critical for human adaptation and in particular for Indigenous and local communities (21). High-integrity ecosystems have greater stability, resilience, capacity to adapt, and provide higher quality ecosystem assets and services that contribute to human wellbeing (21). Ecosystem integrity therefore is fundamental to maximising the adaptation benefits from ecosystem services in addition to retaining its most important climate mitigation value, securing long-lived and relatively stable carbon storage (8).

Linking with the UNCCD

While improving the protection of carbon dense natural ecosystems is the highest priority for achieving synergistic climate and biodiversity outcomes, there is a critically important role for ecological restoration, and reforestation and afforestation programs aimed at reversing land degradation, to ensure they are designed to maximise climate, biodiversity and other ecosystem service benefits.

Improving the resilience and resistance of ecosystems to threats that are increasing with climate change (pests, disease, drought and fire) is a common imperative of all three of the Rio Conventions and arguably many other multi-lateral agreements. Ecological principles therefore should guide all restoration action. For example, focusing restoration on buffering and reconnecting even small areas of natural, carbon dense ecosystems and fostering regeneration, connectivity and recovery of degraded natural ecosystems, including forests, are relevant for the effectiveness of each Convention.

Improving the information base and metrics for success – assessing and monitoring Ecosystem Integrity

Improving the information base available to decision makers is essential for building greater coherence between the CBD, UNCCD and UNFCCC. It is impossible to implement the Paris Agreement Preambular call to protect and restore biodiversity and ecosystem integrity and the ecosystem provisions in the UNFCCC (Article 4.1(d)) and Paris Agreement (Article 5.1) without increasing understanding of the functional role of biodiversity and ecosystem integrity in carbon sequestration and storage.

Moreover, the understandable focus in the CBD on the impacts of climate change on biodiversity results in too little attention being paid to the impacts of losing biodiversity and ecosystem integrity

on limiting warming to as close as possible to 1.5 degrees. Species are impacted by climate change but at the same time every natural component of biodiversity matters for retaining and recovering the integrity of ecosystems and thus the stability and longevity of irreplaceable ecosystem services. The most notable of these, in the climate context, are carbon sequestration and long-term retention of and risks to, carbon stocks. However, other services are also of critical importance to sustainable development such as the provision of high quality and consistent supply of fresh water.

While various approaches have been developed to monitor and evaluate ecosystem integrity (23), the international community has yet to agree on a standard set of metrics. Given the importance of ecosystem integrity for achieving climate and biodiversity goals, it will be essential to develop an agreed assessment and monitoring framework, including an agreed operational definition of key terms.

The importance of identifying differences in the ecological integrity of ecosystems (ecosystem integrity) is highlighted by the work of the UN Statistical Commission in the development and refinement of the new global statistical standard for the System of Environmental Economic Accounting - Ecosystem Accounts (SEEA-EA) that incorporates the measurement of condition of ecosystem assets (24). This framework includes an important definition of ecosystem integrity which forms a natural reference level of the indicators of ecosystem condition against which degraded or modified ecosystem can be compared. The condition of ecosystem assets are linked to the provision of ecosystem services, whereby ecosystems with a high level of integrity, as assessed by their condition indicators, are associated with the benefits of high levels of services such as the retention of large, stable carbon reservoirs. The standard SEEA-EA framework can be applied at a range of scales, from regional to national and international. The metrics used to measure ecosystem condition, and hence assess ecosystem integrity, are selected so as to be appropriate for the ecosystem types, scale of the accounting area, data availability, and time scale of changes. Clear guidance is provided for the selection criteria of metrics and a classification typology that ensures comprehensive representation of ecosystem characteristics. The ecosystem accounts for the extent and condition of ecosystem assets and the provision of ecosystem services provide valuable information about the physical evaluation of the status of ecosystems. The physical metrics describing ecosystem assets and ecosystem services can be translated into monetary terms where appropriate valuation methods are available, and these can be integrated with the national economic accounts. This framework allows assessment of ecosystem integrity to be included in national balance sheets.

Improving capacity to monitor ecosystem integrity is essential to assess whether we are in fact achieving Global Biodiversity Framework objectives and UNFCCC goals. Guidance, criteria and indicators are necessary for Parties to report on the condition and stability of their carbon dense ecosystems and the risks to those ecosystems. Current monitoring frameworks frequently use a range of different approaches many of which were not developed specifically for this purpose. Furthermore, many rely on modelled and assumed impacts and on remotely-sensed data which are not sufficiently calibrated with field survey data to map ecosystem degradation. As a result, existing frameworks are often not sufficiently accurate or precise to form an adequate basis for

land use planning exercises or to monitor accurately progress towards CBD and UNFCCC convention goals.

Creating synergies between biodiversity and climate actions requires a common information base using a standardized framework, guidance and metrics that is provided by the SEEA-EA. Ecosystem accounts are being compiled and used for land management decision-making and local, regional, national and continental scales, with over 50 countries producing some national-level ecosystem accounts. The data in these existing accounts, and their ongoing refinements, can be used for national reporting to the UNFCCC and K-M GBF.

Conclusions

Cross convention work is needed to:

- Achieve a shared understanding that the biodiversity crisis is as serious an existential threat to humanity as the climate crisis and that protecting and restoring ecosystem integrity and preventing further loss, fragmentation and degradation to natural ecosystems is essential if we are to achieve the goals of each Convention.
- Develop agreed definitions of key terms and identify current climate rules and actions in land, forests and other ecosystems that undermine biodiversity goals and targets and which warrant updating and supplementary materials.
- Document the importance of ecosystem integrity for maximising ecosystem services essential for climate resilient sustainable development, retaining ecosystem carbon stocks and protecting the ability of ecosystems to accumulate carbon in biosphere reservoirs and support natural carbon cycling over the long term.
- Adapt the UN System of Economic Environmental Accounting – Ecosystem Accounts (UNSEEA-EA) to enable consistent and comprehensive accounting for ecosystem services including their mitigation and adaptation benefits.
- Outline the risk factors that reduce ecosystem integrity and thereby increase current and future risk of harming biodiversity, undermining SDG goals and releasing otherwise avoidable ecosystem carbon to the atmosphere.
- Examine the gaps in climate models and how to better reflect natural ecosystems and the roles of biodiversity and ecosystem integrity in regulating the global carbon cycle and atmospheric concentrations of CO₂, and recommend a pathway to IPBES and the IPCC.
- Identify immediate priorities for maximising synergistic climate and biodiversity action, i.e., actions that protect and recover biodiversity and ecosystem integrity in carbon dense ecosystems and thereby reduce or prevent GHG emissions and help recover natural carbon stocks.
- Identify gaps in the operational frameworks adopted by each Convention, given that the frameworks, goals, targets and rules adopted by each convention have been largely developed in isolation, until recently ignoring opportunities for positive synergies, and blind to the perverse outcomes of actions that purport to fulfil the goals of one Convention but undermine the goals of another.

- Develop proposals for ongoing joint work and recommend mechanisms for progressing that work including a joint UNCCD/CBD/UNFCCC work programme to fully operationalise the ecosystem goals of each Convention, the K-M GBF and the Paris Agreement to protect and restore biodiversity and ecosystem integrity and develop a new and common, assessment, indicators and monitoring framework that reflects the functional role of biodiversity, in all its complexity, in underpinning ecosystem integrity and their contribution to the goals of each Convention and especially the K-M GBF and Paris Agreement.
- As part of a joint work programme, assess the current rules and metrics used in the UNFCCC, UNCCD and K-M GBF and how they can be modified and harmonised within the SEEA-EA standard framework to provide a common information base for reporting on the Rio conventions.

Recommendations

SBSTA 63 should forward elements or key options for a draft COP30 decision on enhanced cooperation between the Rio Conventions, including establishing a robust process to drive forward Rio Convention synergies within the UNFCCC and ensuring discussions can continue in subsequent sessions.

An ambitious COP30 decision on Rio Convention synergies should:

- **Recognize the urgency of advancing synergies across the Rio Convention, recall relevant previous decisions adopted under the UNFCCC, including the outcomes of the first Global Stocktake, and welcoming relevant decisions under the CBD and UNCCD.**
- **Request Parties to align their national plans and strategies under the UNFCCC with those under the CBD and UNCCD**, recognising that protecting and restoring ecological integrity is a common imperative of the three Rio Conventions and that all three share a 2030 horizon for the implementation of goals and targets.
- **Request Parties to maximize synergies and minimize trade-offs of climate action on biodiversity, ecosystem integrity, and human rights**, with special attention to vulnerable populations, including Indigenous Peoples and local communities, ensuring safeguards and rights are respected.
- **Request the Executive Secretary of the UNFCCC to collaborate with the Executive Secretaries of the CBD and UNCCD on enhancing and strengthening the mandate of the Rio Conventions Joint Liaison Group (JLG)**, to allow it to deliver guidance on policy coherence and alignment of monitoring and reporting, including through holding exchanges amongst technical, scientific and implementation body chairs across the Rio Conventions. This would complement the existing JLG work supporting national-level synergistic implementation through the joint capacity building programme.
- **Decide to establish and maintain a dedicated space for discussions under the SBSTA agenda item on Cooperation with Other International Organizations**, with the aim of recommending actions to advance cooperation and synergies across the Rio

Conventions, as well as other relevant MEAs, bearing in mind the 2030 implementation horizon of agreed goals and targets and the need to move forward with substantive action to maximise synergies and avoid trade-offs.

- **Decide to establish an Ad-Hoc Technical Expert Group (AHTEG) under the SBSTA agenda item on Cooperation with Other International Organizations**, to develop recommendations to the SBSTA and other relevant UNFCCC bodies on options to enhance international cooperation and policy coherence with the Rio Conventions, including through existing or potential new institutional arrangements. The AHTEG could be operational for a time-limited period (e.g. 1-2 years) to deliver on specific tasks to inform SBSTA's work in this area. This could include:
 - (i) Reviewing existing cooperative arrangements and relevant UNFCCC processes related to Rio Convention collaboration and implementation
 - (ii) Identify barriers to effective coordination and implementation among the Rio Conventions, drawing on inputs and consultations with Parties and non-Party stakeholders, including through submissions; and
 - (iii) Identifying additional opportunities to strengthen policy coherence and address identified barriers, both within existing frameworks and through potential new mechanisms or institutional arrangements, as appropriate.
 - (iv) Facilitating regular exchange and collaboration with the Joint Liaison Group of the Rio Conventions to support its mandate and ensure that recommendations and findings from the AHTEG are shared and considered in the work of the JLG.

The elements above can provide political and technical support towards efforts to further align the UNFCCC with the other Rio Conventions and support progress towards more substantive institutional arrangements that will better embed the opportunities provided by cross-Conventions synergies. These include:

- **A dedicated Work Programme under the UNFCCC SBSTA/SBI:**
- **A Joint Work Programme across the Rio Conventions:** More information about how a Joint Work Programme could work can be found [here](#), and potential areas that such a work programme could cover are outlined [here](#) (including for example improving alignment of monitoring and reporting).

For more information exploring the legal background for potential joint work between the UNFCCC and CBD, see this report:

<https://www.greenpeace.org/static/planet4-international-stateless/2025/06/fe19dc40-maximizing-synergies-legal-briefing.pdf>

References

1. UNFCCC, (2025) Report of the Subsidiary Body for Scientific and Technological Advice on its sixty-second session. https://unfccc.int/sites/default/files/resource/sbsta2025_04_adv_0.pdf
2. IPBES. (2024) Thematic Assessment Report on the Interlinkages among Biodiversity, Water, Food and Health of the Intergovernmental Science-Policy Platform on Biodiversity and Ecosystem Services. <https://doi.org/10.5281/zenodo.13850054>
3. Pereira, C.C., Fernandes, G.W., Negreiros, D., Kenedy- Siqueira, W., Fernandes, S. and Fearnside, P.M. (2023) Hope for funding biodiversity efforts. *Science* 382, 383-384 <https://doi.org/10.1126/science.adk7806>
4. Hamant, O. (2024) Survie dans le Chaos : La robustesse à l'épreuve. *Thinkerview*. https://www.youtube.com/live/JPW_m8JBI2Q
5. Planetary Boundaries Science (PBScience). 2025. Planetary Health Check 2025. Potsdam Institute for Climate Impact Research (PIK), Potsdam, Germany. DOI: 10.48485/pik.2025.017
6. Young, V., Dooley, K., Mackey, B., Keith, H., Gonda, C., Kormos, C., Keto, A. & Kun, Z. (2023) Critical reforms for effective and timely action to prevent irreparable harm to Earth's climate and biodiversity: a call for a Joint CBD & UNFCCC SBSTA Work Plan on Climate and Biodiversity Action. *Griffith Climate Action Beacon Policy Discussion Paper 3/2*
7. IPCC. (2022) Summary for Policymakers. In: Climate Change 2022 Impacts, Adaptation and Vulnerability. doi:10.1017/9781009325844.001
8. Rogers, B.M., Mackey, B., Shestakova, T.A., Keith H., Young, V., Kormos, C.F., DellaSala, D.A., Dean, J., Birdsey, R., Bush, G., Houghton, R.A. & Moomaw, W.R. (2022) Using ecosystem integrity to maximize climate mitigation and minimize risk in international forest policy. *Front. For. Glob. Change*, Sec. Forest Management. <https://doi.org/10.3389/ffgc.2022.9292>
9. Mackey, B., Morgan, E. & Keith, H. (2023) Evaluating Forest landscape management for ecosystem integrity. *Landscape Research*. <https://doi.org/10.1080/01426397.2023.2284938>
10. DellaSala, D.A. et al. (2025) Measuring forest degradation via ecological-integrity indicators at multiple spatial scales. *Biological Conservation* 302, February 2025, 110939 <https://doi.org/10.1016/j.biocon.2024.110939>.
11. Lutz, J.A., Furniss, T.J., Johnson, D.J. et al. (2018) Global importance of large-diameter trees. *Global Ecology Biogeography* 27: 849–864 <https://doi.org/10.1111/geb.12747>
12. Barni, P.E. et al. (2021) Logging Amazon forest increased the severity and spread of fires during the 2015–2016 El Nino. *Forest Ecology and Management* 500. <https://doi.org/10.1016/j.foreco.2021.119652>
13. Lindenmayer, D.B., Zylstra, P., Kooyman, R., Taylor, C., Ward, M. & Watson, J.E.M. (2022) Logging elevated the probability of high-severity fire in the 2019–20 Australian forest fires. *Nat Ecol Evol* 6, 533–535. <https://doi.org/10.1038/s41559-022-01717-y>
14. Mackey, B., Kormos, C.F., Keith, H., Moomaw, W.R., Houghton, R.A., Mittermeier, R.A., Hole, D. & Hugh, S. (2020) Understanding the importance of primary tropical forest protection as a mitigation strategy. *Mitigation and Adaptation Strategies for Global Change* 25(5) 763-787. DOI: 10.1007/s11027-019-09891-4
15. Mackey, B., Prentice, I.C., Steffen, W., House, J.I., Lindenmayer, D., Keith, H. & Berry, S. (2013) Untangling the confusion around land carbon science and climate change mitigation policy. *Nature Climate Change* 3, 552–557; doi:10.1038/nclimate1804.

16. World Climate Research Programme (WCRP). Coupled Model Intercomparison Project. <https://wcrp-cmip.org/cmip-overview/>
17. Grace, J. (2004) Presidential Address: Understanding and Managing the Global Carbon Cycle. *Journal of Ecology*, 92(2), 189–202. <https://www.jstor.org/stable/3599585>
18. Mackey, B., Kormos, C.F., Keith, H., Moomaw, W.R., Houghton, R.A., Mittermeier, R.A., Hole, D. & Hugh, S. (2020) Understanding the importance of primary tropical forest protection as a mitigation strategy. *Mitigation and Adaptation Strategies for Global Change* 25(5) 763-787. DOI: 10.1007/s11027-019-09891-4
19. Keith, H., Vardon, M., Obst, C., Young, V., Houghton, R.A. & Mackey, B. (2021) Evaluating nature-based solutions for climate mitigation and conservation requires comprehensive carbon accounting. *Sci Total Environ.* <https://doi.org/10.1016/j.scitotenv.2020.144341>
20. Mackey, B., Watson, J.E.M. & Hope, G. (2008) Climate change, biodiversity conservation, and the role of protected areas: an Australian perspective. *Biodiversity* 9, 11-18. <http://dx.doi.org/10.1080/14888386.2008.9712902>
21. Buckwell, B., Ware, D., Fleming, C., Smart, J.C.R., Mackey, B., Nalau, J. & Dan, A. (2019) Social benefit cost analysis of ecosystem-based climate change adaptations: a community-level case study in Tanna Island, Vanuatu. *Climate and Development* 12(6) DOI: 10.1080/17565529.2019.1642179
22. Garcia, B., Morgan, E.A., Aruch, M., Ferreira, I.R., Jerozolimski, A., Mackey, B. & Hugh, S. (2024) Large-scale forest protection: The successful case of the Kayapo people in the Brazilian Amazon. *Regional Environmental Change* 24:148 <https://doi.org/10.1007/s10113-024-02304-6>
23. United Nations et al. System of Environmental-Economic Accounting— Ecosystem Accounting (SEEA EA) (2021) <https://seea.un.org/ecosystem-accounting>